Seminar on Machine Teaching

Saarland University – Winter Semester 2019

Adish Singla

5th Nov 2019

Machine Teaching: Key Components

Complexity Measures: TD

Notion of teaching complexity: Teaching dimension TD

- Introduced by [Goldman, Kearns '91]
- Analysis setting
 - randomized version space learner
 - worst-case analysis
 - finite size hypothesis class
 - exact teaching

Formal definition of TD

- Length of optimal teaching sequence for h^* is $|TS(h^*; \mathcal{H}, \mathcal{X})|$
- Teaching dimension is defined as

$$TD(\mathcal{H}, \mathcal{X}) := \max_{h^* \in \mathcal{H}} |TS(h^*; \mathcal{H}, \mathcal{X})|$$

Complexity Measures: TD

Examples for computing TD

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x_5	$ TS(h^*) $)	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	ľ	TS(h*
h_1	1	1	1	1	1	1	h_1	1	0	0	0		1
h_2	0	1	1	1	1	2	h ₂	0	1	0	0		1
h_3	0	0	1	1	1	2	h ₃	0	0	1	0		1
h_4	0	0	0	1	1	2	h_4	0	0	0	1		1
h_5	0	0	0	0	1	2	h_5	0	0	0	0		4

 $TD(\mathcal{H}, \mathcal{X}) = 2$

 $TD(\mathcal{H}, \mathcal{X}) = 4$

Complexity Measures: VCD

Notion of learning complexity: VCD

- Introduced by [Vapnik, Chervonenkis '71]
- Sample complexity bounds for learning grow as $\Theta(VCD(\mathcal{H}, \mathcal{X}))$

Formal definition of ``shattering" and VCD

- Consider a set $C \subseteq \mathcal{X}$ of size d given by $C = \{c_1, c_2, \dots, c_d\}$
 - Pattern of h on C is given by $P(h, C) \coloneqq (h(c_1), h(c_2), \dots, h(c_d))$
 - Unique patterns of \mathcal{H} on C are given by $P(\mathcal{H}, C) \coloneqq \bigcup_{h \in \mathcal{H}} \{P(h, C)\}$
- \mathcal{H} shatters C if $|P(\mathcal{H}, C)| = 2^d$
- \mathcal{H} has VCD of d, i.e., $VCD(\mathcal{H}, \mathcal{X}) = d$ when
 - 1. $\exists C \subseteq X$ of size d such that \mathcal{H} shatters C
 - *2.* \nexists C $\subseteq X$ of size d + 1 such that \mathcal{H} shatters C

Complexity Measures: VCD

Examples for computing VCD

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
h_1	1	0	0	0
h_2	0	1	0	0
h_3	0	0	1	0
h_4	0	0	0	1
h_5	0	0	0	0

 $VCD(\mathcal{H}, \mathcal{X}) = 1$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
h_1	1	0	0	0
h_2	0	1	0	0
h_3	0	0	1	0
h_4	0	0	0	1
h_5	0	0	0	0
h_6	0	0	1	1

 $VCD(\mathcal{H}, \mathcal{X}) = 2$

Complexity Measures: TD vs. VCD

A fundamental question: TD vs. VCD?

- $TD(\mathcal{H}, \mathcal{X})$ is $O(VCD(\mathcal{H}, \mathcal{X}))$?
- There exist problems with
 - $TD(\mathcal{H}, \mathcal{X}) \ll O(VCD(\mathcal{H}, \mathcal{X}))$
 - $TD(\mathcal{H}, \mathcal{X}) \gg O(VCD(\mathcal{H}, \mathcal{X}))$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
h_1	1	0	0	0
h_2	0	1	0	0
h_3	0	0	1	0
h_4	0	0	0	1
h_5	0	0	0	0

 $TD(\mathcal{H}, \mathcal{X}) = 4$ $VCD(\mathcal{H}, \mathcal{X}) = 1$

Improved Notions of TD: RTD

Teaching an "adversarial" learner: Classic TD

Simple classes can be difficult to teach

Teaching a "cooperative" learner: Recursive TD (RTD)

- Introduced by [Zilles et al. @ COLT'08]
- $RTD(\mathcal{H}, \mathcal{X})$ is $O(VCD(\mathcal{H}, \mathcal{X}))$? [Simon, Zilles @ COLT'15]
- An active area of research
 - $O(d \ 2^d \log \log |\mathcal{H}|)$ [Moran et al. @ FOCS'15]
 - $O(d 2^d)$ [Chen et al. @ NIPS' 16]
 - O(d²) [Hu et al. @ COLT' 17]

where d denotes $VCD(\mathcal{H}, \mathcal{X})$

Improved Notions of TD: Unified View

Key limitations of existing models and measures

- A number of complexity measures: Classic-TD, RTD, PBTD, NCTD, ...
- Batch teaching
 - Order of examples does not matter
 - Learner's feedback does not matter
- Teaching complexity not linear in VCD

Our recent work

- ``Preference-Based Batch and Sequential Teaching: Towards a Unified View of Models" [NeurIPS'19]
- ``Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners" [NeurIPS'18]

Cognitive Model of Skill Acquisition

Cognitive tutors

- Used by millions of students for K-12 education
 - https://www.carnegielearning.com/
 - <u>https://new.assistments.org/</u>

Bayesian Knowledge Tracing (BKT)

- Introduced by [Corbett, Anderson '95]
- Knowledge Components (KC)
 - A learning task is associated with a set of skills
 - Practicing a skill leads to mastery of that skill

Task: Geometry and Algebra

Knowledge components (KCs) and exercises

k = c: Congruent triangles

k = v: One variable equations

Teaching Interaction under BKT

- Each KC k is associated with a knowledge state h^k
 - $h^k = 1$ represents that the skill has been mastered
 - $h^k = 0$ otherwise

Interaction at time t = 1, 2, ... T

- Denote the value of h^k at the end of time t as h_t^k
- Initialize h^k₀ for all KCs
- At time *t* :
 - Teacher provides exercise x_t associated with KC k
 - Learner responds $y_t \in \{0, 1\}$ with knowledge h_{t-1}^k
 - Learner updates knowledge from h_{t-1}^k to h_t^k

BKT Learner Model

Learner's initial knowledge (one parameter per KC)

• Probability of mastery before teaching $P_{\text{init}}^k \coloneqq P(h_0^k = 1)$

Learner's response (two parameters per KC)

- Conditional probability of guessing $P_{guess}^k := P(y_t = 1 | h_{t-1}^k = 0)$
- Conditional probability of *slipping* $P_{slip}^k := P(y_t = 0 | h_{t-1}^k = 1)$

Learner's update (one parameter per KC)

• Conditional probability of *learning* $P_{\text{learn}}^k := P(h_t^k = 1 | h_{t-1}^k = 0)$

BKT Learner Model: HMM Representation

Hidden Markov Model (HMM) for a single KC k

BKT Learner Model: DBN Representation

Dynamic Bayesian Network (DBN) for a single KC k

BKT Learner Model: DBN Representation

 $P(Y_t = 1 \mid H_{t-1}^c, H_{t-1}^v, X_t)$

 $P(H_t^c = 1 | H_{t-1}^c, X_t)$

	$X_t = c$	$X_t = v$
$H_{t-1}^c = 0, H_{t-1}^v = 0$	P ^c _{guess}	$P_{ m guess}^{v}$
$H_{t-1}^c = 1, H_{t-1}^v = 0$	$1 - P_{\rm slip}^c$	$P_{ m guess}^{v}$
$H_{t-1}^c = 0, H_{t-1}^v = 1$	P ^c _{guess}	$1 - P_{\rm slip}^{v}$
$H_{t-1}^c = 1, H_{t-1}^v = 1$	$1 - P_{\rm slip}^c$	$1 - P_{\rm slip}^{v}$

$H_{t-1}^c = 0, X_t = c$	P ^c _{learn}
$H_{t-1}^{c} = 1, X_{t} = c$	1
$H_{t-1}^c = 0, X_t = v$	0
$H_{t-1}^{c} = 1, X_{t} = v$	1

Prediction and inference for a single KC k

- Learner's responses at the end of time $t: D_t := \{y_1, y_2, \dots, y_t\}$
- Predicting learner's response: $P(Y_t^k = 1 | D_{t-1})$
- Inferring learner's knowledge: $P(H_t^k = 1 | D_t)$ denoted as θ_t^k

Incremental computations

- Initial $\theta_0^k = P_{\text{init}}^k$ is known
- Compute $P(Y_t^k = 1 | D_{t-1})$ from θ_{t-1}^k
- Compute θ_t^k from θ_{t-1}^k and y_t

Predicting learner's response

 $P(Y_t^k = 1 \mid D_{t-1}) = (1 - P_{slip}^k) \cdot \theta_{t-1}^k + P_{guess}^k \cdot (1 - \theta_{t-1}^k)$

Derivation:

 $P(Y_t^k = 1 \mid D_{t-1}) = P(Y_t^k = 1, H_{t-1}^k = 1 \mid D_{t-1}) + P(Y_t^k = 1, H_{t-1}^k = 0 \mid D_{t-1})$ $= P(Y_t^k = 1 \mid H_{t-1}^k = 1, D_{t-1}) \cdot P(H_{t-1}^k = 1 \mid D_{t-1})$ $+ P(Y_t^k = 1 \mid H_{t-1}^k = 0, D_{t-1}) \cdot P(H_{t-1}^k = 0 \mid D_{t-1})$ $= P(Y_t^k = 1 \mid H_{t-1}^k = 1) \cdot P(H_{t-1}^k = 1 \mid D_{t-1})$ $+ P(Y_t^k = 1 \mid H_{t-1}^k = 0) \cdot P(H_{t-1}^k = 0 \mid D_{t-1})$ $= (1 - P_{slip}^k) \cdot \theta_{t-1}^k + P_{suess}^k \cdot (1 - \theta_{t-1}^k)$

Inferring learner's knowledge

 $P(H_t^k = 1 \mid D_t) = \hat{\theta}_{t-1}^k + P_{\text{learn}}^k \cdot (1 - \hat{\theta}_{t-1}^k)$

where $\hat{\theta}_{t-1}^{k}$ is an intermediate quantify computed from θ_{t-1}^{k} and y_{t}

Computing $\hat{\theta}_{t-1}^{k}$ by applying Bayes rule

• For
$$y_t = 1$$
, $\hat{\theta}_{t-1}^k \coloneqq \frac{(1 - P_{\text{slip}}^k) \cdot \theta_{t-1}^k}{(1 - P_{\text{slip}}^k) \cdot \theta_{t-1}^k + P_{\text{guess}}^k \cdot (1 - \theta_{t-1}^k)}$

• For
$$y_t = 0$$
, $\hat{\theta}_{t-1}^k \coloneqq \frac{P_{\text{slip}}^k \cdot \theta_{t-1}^k}{P_{\text{slip}}^k \cdot \theta_{t-1}^k + (1 - P_{\text{guess}}^k) \cdot (1 - \theta_{t-1}^k)}$

An example of prediction and inference

• Parameters: $P_{\text{init}}^{k} = 0.5$, $P_{\text{learn}}^{k} = 0.2$, $P_{\text{guess}}^{k} = 0.1$, $P_{\text{slip}}^{k} = 0.1$

Teaching Process using BKT

- Datasets publicly available
- Parameter fitting by standard techniques

BKT: Two Main Research Themes

Improving learner model

- Forgetting
- Individualization per student
- Skill discovery
 - exercises to skills mapping
 - Inter-skill similarity and prerequisite structure

Designing teaching policies

- When to stop teaching a skill?
- Optimizing the curriculum via planning in DBN

Improved Learner Models for BKT

DBN for a single KC k with forgetting

Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM'16]

- BKT: Standard model
 - **BKT₁**: One model for all skills
 - **BKT₂:** Multiple models, one per skill
- **BKT-F**: With forgetting
- **BKT-I**: Individualization per student
- **BKT-S**: Skill discovery as part of BKT
- **BKT-FIS**: Above three extensions combined

Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM'16]

- Dataset from
 - # students: 15,900
 - # skills: 124 (with multiple exercises per skill)
 - # student-exercise attempts: 0.5 million
- Cross-validation by splitting data based on student ids
- Performance metric: AUC (ranging from 0.5 to 1)

BKT ₁	BKT ₂	BKT-F	BKT-I	BKT-S	BKT-FIS	Deep BKT
0.67	0.73	0.83	0.785	0.76	0.825	0.86

Deep Knowledge Tracing [Piech et al. @ NIPS'15]

Designing Teaching Policies

Much less research on designing teaching policies

- The most popular way of using BKT for teaching is
 - STOP teaching skill k when $P(H_t^k = 1 | D_t) \ge 0.95$
- Planning techniques
 - Faster teaching via POMDP Planning [Rafferty et al. @ CogSci'16]
- "When to stop" instructional policies with guarantees
 - When to stop? Towards Universal Instructional Policies [Käser, Klingler, Gross @ LAK'16]
 - From Predictive Models to Instructional Policies [Rollinson, Brunskill @ LAK'15]

Cognitive Models of Skill Acquisition

Summary of BKT

- Well-studied cognitive model, used in real-world applications
- Generic model for complex learning tasks (e.g., learning Algebra)

Limitations of using cognitive models

- Difficult to design optimal teaching policies
- Generic models but might not capture fine-grained task details

Sequential Decision Making: Ingredients

Key ingredients

- A sequence of actions with long term consequences
- Delayed feedback
 - Safely reaching the destination in time
 - Successfully solving the exercise
 - Winning or losing a game
- Main components
 - Environment representing the problem
 - **Student** is the learning agent taking actions
 - Teacher helping the student to learn faster

Sequential Decision Making: Environment

Markov Decision Process $M := (S, A, P, S_{init}, S_{end}, R)$

- *S*: states of the environment
- A: actions that can be taken by agent
- P(s'|s, a): the transition of the environment when action is taken
- *S_{init}*: defines a set of initial states
- *S_{end}*: defines a set of terminal states
- *R*(*s*, *a*): reward function

Sequential Decision Making: Policy

Agent's policy π

- $\pi(s) \rightarrow a$: A deterministic policy
- $\pi(s) \rightarrow P(a)$: A stochastic policy

Utility of a policy

• Expected total reward when executing a policy π is given by

$$U^{\pi} = \mathbb{E}_{P,\pi} \left[\sum_{\tau} R(s_{\tau}, a_{\tau}) \right]$$

• Agent's goal is to learn an optimal policy

$$\pi^* = \operatorname{argmax}_{\pi} U^{\pi}$$

An Example: Car Driving Simulator

- State *s* represented by a feature vector $\phi(s)$ (location, speed, acceleration, car-in-front, HOV, ...)
- Action *a* could be discrete/continuous {left, straight, right, brake, speed+, speed-, ...}

- Transition P(s'|s, a) defines how world evolves (stochastic as it depends on other drivers in the environment)
- *R*(*s*, *a*) defines immediate reward, e.g.,
 - 100 if $s \in S_{end}$
 - -1 if $s \notin S_{end}$
 - -10 if s represents ``accident"
- Policy π^* dictates how an agent should drive

An Example: Tutoring System for Algebra

- State s represents the current layout of variables
- Action a could be {move, combine, distribute, stop, ...}
- Transition P(s'|s, a) is deterministic
- R(s, a) defines immediate reward, e.g.,
 - 100 if $s \in S_{end}$
 - -1 if $s \notin S_{end}$

An Example: Tutoring System for Coding

- State s could be represent
 - raw source code
 - abstract syntax tree (AST)
 - execution behavior

• Action *a* could be eligible updates (e.g., allowed by the interface)

Image credits: [Piech et al. @ LAK'15]

Learning Settings: Rewards

- Standard setting in reinforcement learning (RL)
- *P* is known, *R* is known
 - Mode-based planning algorithms (e.g., Value iteration)
- *P*, *R* are both unknown
 - Model-free learning algorithms (e.g., Q-learning)

(Book) Reinforcement Learning: An Introduction [Barto and Sutton 2018]

Learning Settings: Demonstrations

- Also known as "Imitation Learning"
 - Learning via observing behavior of another agent
- A popular framework: Inverse reinforcement learning (IRL)
 - Recover reward function explaining observed demonstrations
 - E.g., Maximum Causal Entropy algorithm (MCE-IRL)

(Survey) An Algorithmic Perspective on Imitation Learning [Osa et al. 2018]

The Role of Teacher: Research Problems

Teaching via demonstrations

Optimizing curriculum of tasks

Optimizing sequence of demonstrations

Accounting for model mismatch

#6

Teaching via reward signals

Optimizing curriculum of tasks

Providing advice (e.g., correcting errors)

#7

Reward shaping (e.g., defining sub-goals)

#8

Course Logistics

• Webpage

https://machineteaching.mpi-sws.org/course-mt-w19.html

• Contact

adishs@mpi-sws.org

Slides

https://machineteaching.mpi-sws.org/files/course-mt-w19/machineteaching-day1.pdf https://machineteaching.mpi-sws.org/files/course-mt-w19/machineteaching-day2.pdf