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Machine Teaching: Key Components
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Complexity Measures: TD
Notion of teaching complexity: Teaching dimension TD
• Introduced by [Goldman, Kearns ’91] 
• Analysis setting

• randomized version space learner
• worst-case analysis
• finite size hypothesis class
• exact teaching 

Formal definition of TD
• Length of optimal teaching sequence for ℎ∗ is #$(ℎ∗;ℋ,) |
• Teaching dimension is defined as

#+ ℋ,) := max1∗∈ℋ |#$ ℎ
∗;ℋ,) |
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Complexity Measures: TD
Examples for computing TD 
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Complexity Measures: VCD
Notion of learning complexity: VCD
• Introduced by [Vapnik, Chervonenkis ’71] 

• Sample complexity bounds for learning grow as Θ "#$ ℋ,'

Formal definition of ``shattering” and VCD
• Consider a set C ⊆ ' of size * given by C = ,-, ,. , … , ,0

• Pattern of ℎ on C is given by 2(ℎ, #) ≔ ℎ ,- , ℎ ,. , … , ℎ ,0
• Unique patterns of ℋ on C are given by 2(ℋ, #) ≔ ⋃7∈ℋ{2(ℎ, #)}

• ℋ shatters C if |2(ℋ, #)| = 20
• ℋ has VCD of * , i.e., "#$ ℋ,' = * when

1. ∃ C ⊆ ' of size * such that ℋ shatters C
2. ∄ C ⊆ ' of size * + 1 such that ℋ shatters C
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Complexity Measures: VCD
Examples for computing VCD 
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Complexity Measures: TD vs. VCD
A fundamental question: TD vs. VCD?
• !" ℋ,% is & '(" ℋ,% ?
• There exist problems with 

• !" ℋ,% ≪ & '(" ℋ,%
• !" ℋ,% ≫ & '(" ℋ,%
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Improved Notions of TD: RTD
Teaching an “adversarial” learner: Classic TD
• Simple classes can be difficult to teach

Teaching a “cooperative” learner: Recursive TD (RTD)
• Introduced by [Zilles et al. @ COLT’08] 

• !"# ℋ,& is ' ()# ℋ,& ? [Simon, Zilles @ COLT’15] 

• An active area of research
• ' * 2, log log |ℋ| [Moran et al. @ FOCS’15] 

• ' * 2, [Chen et al. @ NIPS’ 16]

• ' *1 [Hu et al. @ COLT’ 17]
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Improved Notions of TD: Unified View
Key limitations of existing models and measures
• A number of complexity measures: Classic-TD, RTD, PBTD, NCTD, …
• Batch teaching

• Order of examples does not matter
• Learner’s feedback does not matter

• Teaching complexity not linear in VCD

Our recent work
• ``Preference-Based Batch and Sequential Teaching: Towards a 

Unified View of Models” [NeurIPS’19] 
• ``Understanding the Role of Adaptivity in Machine Teaching: The 

Case of Version Space Learners” [NeurIPS’18] 
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Cognitive Model of Skill Acquisition
Cognitive tutors
• Used by millions of students for K-12 education

• https://www.carnegielearning.com/
• https://new.assistments.org/

Bayesian Knowledge Tracing (BKT)
• Introduced by [Corbett, Anderson ’95] 
• Knowledge Components (KC)

• A learning task is associated with a set of skills
• Practicing a skill leads to mastery of that skill
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Task: Geometry and Algebra
Knowledge components (KCs) and exercises 
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Teaching Interaction under BKT
• Each KC ! is associated with a knowledge state ℎ#

• ℎ# = 1 represents that the skill has been mastered
• ℎ# = 0 otherwise

Interaction at time ' = 1, 2, …+
• Denote the value of ℎ# at the end of time ' as ℎ,#
• Initialize ℎ-# for all KCs
• At time ':

• Teacher provides exercise ., associated with KC !
• Learner responds /, ∈ {0, 1} with knowledge ℎ,34#

• Learner updates knowledge from ℎ,34# to ℎ,#
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BKT Learner Model
Learner’s initial knowledge (one parameter per KC)
• Probability of mastery before teaching !"#"$% ≔ !(ℎ)% = 1)

Learner’s response (two parameters per KC)
• Conditional probability of guessing !-./00% ∶= ! 23 = 1 | ℎ356% = 0
• Conditional probability of slipping !08"9% ∶= ! 23 = 0 | ℎ356% = 1

Learner’s update (one parameter per KC)
• Conditional probability of learning !8/:;#% ∶= ! ℎ3% = 1 | ℎ356% = 0
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BKT Learner Model: HMM Representation
Hidden Markov Model (HMM) for a single KC !
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BKT Learner Model: DBN Representation
Dynamic Bayesian Network (DBN) for a single KC !
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BKT Learner Model: DBN Representation
Dynamic Bayesian Network for two independent KCs {", $}

&'()*'() &'*'

+'(,- +'()- +'-

+'(,. +'(). +'.

+'()- = 0, *' = " 123456-

+'()- = 1, *' = " 1
+'()- = 0, *' = $ 0
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1 +'- = 1 | +'()- , *'1 &' = 1 | +'()- , +'(). , *'

Exercise * is chosen by teacher 
and takes value {", $}
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*' = " *' = $
+'()- = 0, +'(). = 0 19:3;;- 19:3;;.

+'()- = 1, +'(). = 0 1 − 1;2=>- 19:3;;.

+'()- = 0, +'(). = 1 19:3;;- 1 − 1;2=>.

+'()- = 1, +'(). = 1 1 − 1;2=>- 1 − 1;2=>.



BKT Teacher
Prediction and inference for a single KC !
• Learner’s responses at the end of time ": #$ ≔ {'(, '*, … , '$}
• Predicting learner’s response: - .$/ = 1 | #$3(
• Inferring learner’s knowledge: - 4$/ = 1 | #$ denoted as 5$/

Incremental computations
• Initial 56/ = -7879/ is known
• Compute - .$/ = 1 | #$3( from 5$3(/

• Compute 5$/ from 5$3(/ and '$
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BKT Teacher
Predicting learner’s response
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! "#$ = 1 | (#)* = ! "#$ = 1,,#)*$ = 1 | (#)* + ! "#$ = 1,,#)*$ = 0 | (#)*
= ! "#$ = 1 | ,#)*$ = 1, (#)* / ! ,#)*$ = 1 | (#)*
+ ! "#$ = 1 | ,#)*$ = 0, (#)* / ! ,#)*$ = 0 | (#)*

= ! "#$ = 1 | ,#)*$ = 1 / ! ,#)*$ = 1 | (#)*
+ ! "#$ = 1 | ,#)*$ = 0 / ! ,#)*$ = 0 | (#)*

= (1 − !2345$ ) / 7#)*$ + !89:22$ / (1 − 7#)*$ )

! "#$ = 1 | (#)* = (1 − !2345$ ) / 7#)*$ + !89:22$ / (1 − 7#)*$ )

Derivation:



BKT Teacher
Inferring learner’s knowledge

where !"#$%& is an intermediate quantify computed from "#$%& and '#

Computing ("#$%& by applying Bayes rule
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BKT Teacher
An example of prediction and inference
• Parameters: !"#"$% = 0.5, !*+,-#% = 0.2, !/0+11% = 0.1, !1*"3% = 0.1
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Teaching Process using BKT
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BKT: Two Main Research Themes
Improving learner model
• Forgetting
• Individualization per student
• Skill discovery

• exercises to skills mapping
• Inter-skill similarity and prerequisite structure

Designing teaching policies
• When to stop teaching a skill?
• Optimizing the curriculum via planning in DBN 
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Improved Learner Models for BKT
DBN for a single KC ! with forgetting
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Improved Learner Models for BKT
Comparing different models
• BKT: Standard model

• BKT1: One model for all skills
• BKT2: Multiple models, one per skill

• BKT-F: With forgetting
• BKT-I: Individualization per student 
• BKT-S: Skill discovery as part of BKT
• BKT-FIS: Above three extensions combined
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[Khajah, Lindsey, Mozer @ EDM’16]



Deep Knowledge Tracing 
[Piech et al. @ NIPS’15] 

Improved Learner Models for BKT
Comparing different models
• Dataset from 

• # students: 15,900

• # skills: 124  (with multiple exercises per skill)

• # student-exercise attempts: 0.5 million

• Cross-validation by splitting data based on student ids

• Performance metric: AUC (ranging from 0.5 to 1)
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BKT1 BKT2 BKT-F BKT-I BKT-S BKT-FIS Deep BKT

0.67 0.73 0.83 0.785 0.76 0.825 0.86

[Khajah, Lindsey, Mozer @ EDM’16]



Designing Teaching Policies
Much less research on designing teaching policies
• The most popular way of using BKT for teaching is

• STOP teaching skill ! when " #$% = 1 | )$ ≥ 0.95
• Planning techniques

• Faster teaching via POMDP Planning [Rafferty et al. @ CogSci’16] 
• “When to stop” instrucMonal policies with guarantees

• When to stop? Towards Universal InstrucMonal Policies [Käser, Klingler, Gross @ LAK’16] 
• From PredicMve Models to InstrucMonal Policies [Rollinson, Brunskill @ LAK’15] 
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Better predictive models Better instructional policies



Cognitive Models of Skill Acquisition
Summary of BKT
• Well-studied cognitive model, used in real-world applications
• Generic model for complex learning tasks (e.g., learning Algebra)

Limitations of using cognitive models
• Difficult to design optimal teaching policies
• Generic models but might not capture fine-grained task details
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Sequential Decision Making: Ingredients
Key ingredients
• A sequence of actions with long term consequences
• Delayed feedback

• Safely reaching the destination in time
• Successfully solving the exercise
• Winning or losing a game

• Main components
• Environment representing the problem
• Student is the learning agent taking actions
• Teacher helping the student to learn faster
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Sequen&al Decision Making: Environment
Markov Decision Process ! ≔ ($, &, ', $()(*, $+),, -)
• $: states of the environment
• &: actions that can be taken by agent
• P(/0|/, 2): the transition of the environment when action is taken
• $()(*: defines a set of initial states
• $+),: defines a set of terminal states
• -(/, 2): reward function
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Sequential Decision Making: Policy
Agent’s policy !
• "($) → ': A deterministic policy  
• "($) → ((') : A stochastic policy

Utility of a policy
• Expected total reward when executing a policy " is given by

• Agent’s goal is to learn an optimal policy

36

)* = ,-, * /
0
1 $0, '0

"∗ = argmax* )*



An Example: Car Driving Simulator
• State ! represented by a feature vector "(!)

(location, speed, acceleration, car-in-front, HOV, …)

• Action % could be discrete/continuous
{left, straight, right, brake, speed+, speed-, …}

• Transition & !' !, % defines how world evolves 
(stochastic as it depends on other drivers in the environment)

• ) !, % defines immediate reward, e.g.,
• 100 if ! ∈ +,-.
• -1 if ! ∉ +,-.
• -10 if ! represents ``accident”

• Policy 0∗ dictates how an agent should drive
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An Example: Tutoring System for Algebra
• State ! represents the current layout of variables
• Action " could be {move, combine, distribute, stop, …}
• Transition # !$ !, " is deterministic
• & !, " defines immediate reward, e.g., 

• 100 if ! ∈ ()*+
• -1 if ! ∉ ()*+
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An Example: Tutoring System for Coding
• State ! could be represent

• raw source code
• abstract syntax tree (AST)
• execution behavior
• ...

• Action " could be eligible updates (e.g., allowed by the interface)

39Image credits: [Piech et al. @ LAK’15]

HoC Problem 4

HoC Problem 18



Learning Settings: Rewards
• Standard setting in reinforcement learning (RL)
• ! is known, " is known

• Mode-based planning algorithms (e.g., Value iteration)

• !, " are both unknown
• Model-free learning algorithms (e.g., Q-learning)
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(Book) Reinforcement Learning: An Introduction [Barto and Sutton 2018]



Learning Se*ngs: Demonstra1ons
• Also known as “Imitation Learning”

• Learning via observing behavior of another agent

• A popular framework: Inverse reinforcement learning (IRL)
• Recover reward function explaining observed demonstrations
• E.g., Maximum Causal Entropy algorithm (MCE-IRL)
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(Survey) An Algorithmic Perspective on Imitation Learning [Osa et al. 2018]



The Role of Teacher: Research Problems
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space

43

#1 #2, #3#4 #5 #6, #7, #8



Course Logistics
• Webpage  

https://machineteaching.mpi-sws.org/course-mt-w19.html

• Contact
adishs@mpi-sws.org

• Slides
https://machineteaching.mpi-sws.org/files/course-mt-w19/machineteaching-day1.pdf
https://machineteaching.mpi-sws.org/files/course-mt-w19/machineteaching-day2.pdf
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