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ABSTRACT
Intelligent tutoring systems for programming education can
support students by providing personalized feedback when
a student is stuck in a coding task. We study the problem
of designing a hint policy to provide a next-step hint to stu-
dents from their current partial solution, e.g., which line of
code should be edited next. The state of the art techniques
for designing a hint policy use supervised learning approach,
however, require access to historical student data contain-
ing trajectories of partial solutions written when solving the
task successfully. These techniques are limited in applicabil-
ity when needed to provide feedback for a new task without
any available data, or to a new student whose trajectory
of partial solutions is very different from that seen in his-
torical data. To this end, we tackle the zero-shot challenge
of learning a hint policy to be able to assist the very first
student who is solving a task, without relying on any data.
We propose a novel reinforcement learning (RL) framework
to solve the challenge by leveraging recent advancements in
RL-based neural program synthesis. Our framework is mod-
ular and amenable to several extensions, such as designing
appropriate reward functions for adding a desired feature in
the type of provided hints and allowing to incorporate stu-
dent data from the same or related tasks to further boost the
performance of the hint policy. We demonstrate the effec-
tiveness of our RL-based hint policy on a publicly available
dataset from Code.org, the world’s largest programming ed-
ucation platform.

1. INTRODUCTION
In recent years, there has been an increasing focus on devel-
oping educational tools for STEM (science, technology, engi-
neering, and mathematics) and computing. Problem-solving
skill, i.e., ability to solve multi-step problems by deductive
reasoning, is one of the key ingredient of learning in these
domains [14, 25]. For instance, while working on a coding
task, a student iteratively writes, tests and refines the code
to arrive at the final solution [8, 23, 27, 24].

One of the difficulties in designing assistive algorithms for
these open-ended coding tasks is that the state space, i.e.,
the set of partial solutions that students might arrive at
when solving the task, is unbounded. For instance, for a sim-
ple coding task from the Hour of Code (HOC) challenge by
Code.org [5], the correct solution contains only 5 blocks (see
Figure 1), whereas students can create millions of unique
partial solutions in the process of solving the task [23]. When
solving such tasks, it is evident that students can get stuck
at a state (i.e., a partial solution) and do not know how to
proceed (i.e., which action/edit to apply). Intelligent tu-
toring systems empowered by machine learning techniques
held a great promise in supporting such stuck students by
providing personalized feedback, e.g., explaining misconcep-
tions and giving guidance on what to do next [31, 16, 2, 24].

We focus on the well-studied feedback mechanism in pro-
gramming education called next-step hints: When a student
is stuck at a given state, the system suggests the next edit
that student should make to their current code to proceed [3,
8, 16, 23, 27, 20]. In the context of block-based languages
that are extremely popular in educational tools for visual
programming [21, 5, 24], the suggested hints correspond to
one of the allowed actions from the student’s current code
(e.g., adding or removing a block, and changing a conditional
in one of the blocks), see Figure 1. Inspired by the work of
[3, 23, 20], we refer to the function that provides such hints
to the student from any partial solution as hint policy.

The key challenge in designing a hint policy is that the space
of partial solutions is unbounded even for simple coding
tasks and there is a huge variability in students’ trajectories
of partial solutions [23, 20, 34]. A number of techniques pro-
posed in the literature use a graph representation of the task
(with nodes denoting partial solutions and edges denoting
single edits that convert one partial solution to another) [3,
9, 23, 35, 27]. These techniques then use historical student
data and domain knowledge to capture the editing behavior
of capable students (or experts) on this graph. However,
these techniques face serious scaling issues as the problem
size grows and are only applicable in settings where we have
access to large volume of historic data for the task.

In recent years, new techniques have been developed using
a supervised learning approach. These techniques leverage
code embeddings to compactly represent the space of partial
solutions and can provide hints to students with trajectories
that have never been observed in the historical data [22, 20].
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Figure 1: Illustration of next-step hints feedback by our hint policy. (a) shows the HOC-18 task from the Hour of Code
(HOC) challenge by Code.org [5]. A student solves the task by starting from empty code and builds up the solution using
blocks available in the visual interface, also see [23]. (b) shows the correct solution—this is the code that solves the task with
minimal number of 5 blocks. (c) shows the current partial solution of a student who is solving this task. (d.left) shows the
next-step hint by our hint policy that will be provided as feedback to the student. (d.right) shows the subsequent next-step
hint by the policy if student were to ask another hint after receiving the first hint.

In particular, the state of the art technique by [20], Continu-
ous Hint Factory (CHF), learns a regression function as the
hint policy which can identify the most likely hint as a vector
in an embedding space and then translates this vector back
into a human-readable edit. In comparison to techniques
using graph representations, CHF is more scalable and re-
quires access to fewer samples of student data (just enough
to learn the generic editing behavior of capable students or
experts for the task).

While these state of the art supervised learning techniques
are less data-hungry and computationally more powerful,
they are still limited in applicability when needed to pro-
vide feedback for a new task without any available data,
or to a new student whose trajectory of partial solutions is
very different from that seen in historical data. Especially
with intelligent tutoring systems having the ability to gen-
erate tasks on the fly [28, 1, 12], the problem of providing
feedback to the very first student on a task is increasingly
important. In this paper, we tackle the following zero-shot
learning challenge: Can we design a hint policy for a task to
provide hints to the very first student solving the task?

1.1 Our Approach and Contributions
Our approach towards zero-shot learning of hint policy is
based on the reinforcement learning (RL) framework. In
the RL terminology, the set of all possible partial solutions
corresponds to the state space, the possible edits from a par-
tial solution defines the state-dependent actions and tran-
sition dynamics, and reaching the correct solution quickly
yields higher reward (we refer the reader to [26, 29] for a
background on RL). Our framework is inspired by recent
works [4, 11] that have shown that deep-RL techniques ap-
plied to neural embeddings of the code are effective in learn-
ing policies to synthesize new programs and to do program
repair even if no/minimal training data is available for the
task. Intuitively, the problem of providing a hint from a cur-
rent partial solution is equivalent to one-step of synthesizing
the program from this partial solution [17, 10]. However, we
note that learning hint policy using RL poses its own practi-
cal challenges because the policy needs to provide hints from
any partial solution which could be arbitrarily bad—this is
in contrast to program synthesis and program repair where
the initial starting states for RL are limited to either an
empty code [4] or a set of partial solutions which are close
to the correct solution [11], respectively. The idea of using
RL for designing hint policy is also inspired by the seminal

work on Hint Factory [3]; however, unlike [3] which relies
on historical student data and uses the graph representation
of partial solutions, our RL framework uses code embedding
and a neural network policy for efficient training.

One might ask what are the advantages of using RL com-
pared to supervised learning techniques for zero-shot chal-
lenge. First and foremost, RL enables an effective self-
exploration of the solution space by leveraging reward sig-
nals (such as receiving higher rewards when a policy can
synthesize the correct solution in a fewer steps or can re-
duce compiler errors). Furthermore, the RL framework is
amenable to several extensions for boosting the performance.
For instance, if additional student data if available from the
same or related tasks, it is possible to bootstrap by com-
bining techniques from imitation learning within RL frame-
work [19, 11]. Also, we can easily incorporate additional hu-
man knowledge or features into the policy by designing ap-
propriate reward functions [4, 11]. In summary, this power
and flexibility of the RL framework makes it especially suit-
able for zero-shot learning as it gives us the following in-
gredients: (i) automatically exploring the solution space or
generating synthetic training data [32, 11, 34], (ii) incorpo-
rating any available data or expert knowledge to bootstrap
and boost the performance [15, 34], and (iii) transferring
knowledge from one task to another [18, 6, 7]. Below, we
summarize our main contributions:

• We introduce the zero-shot challenge for learning a hint
policy to provide next-step hints to the very first student
working on a coding task.

• We propose RL framework for zero-shot learning of hint
policy. Our framework leverages the representation power
of code embedding and a neural network policy for effi-
ciently learning to provide hints. The framework is amen-
able to several important extensions, e.g., bootstrapping
via additional data if available.

• We evaluate the performance of our RL-based hint policy
on a publicly available dataset from Code.org, the world’s
largest programming education platform [5, 23]. We show
significant improvements in next-step hint accuracy w.r.t.
the state of the art supervised learning technique.

2. PROBLEM FORMULATION
In this section, we formalize the problem of learning next-
step hint policy for programming education.



2.1 Coding Task, Partial Solutions, and Edits
We define the problem in the context of a fixed coding task
(e.g., HOC-18 task as shown in Figure 1a). We assume that
the correct solution for the task is known. For brevity of pre-
sentation, we consider that the correct solution is unique (in
fact, the uniqueness holds for HOC-18 task, see Figure 1b).
We denote all possible partial solutions for the task by the
set S. Note that S is a countable, infinite set. A partial solu-
tion s ∈ S is a piece of code, e.g., as shown in Figure 1, and
we denote the correct solution by s∗ ∈ S. For any s ∈ S, we
define the set of edits that can be applied to s by the action
set As. In block-based languages, the set As corresponds to
adding or removing a block in s, editing a conditional for
one of the blocks in s, or moving blocks within s. For a
partial solution s ∈ S and an edit a ∈ As, the next partial
solution obtained by applying a to s is denoted as s⊕ a.

2.2 Hint Policy for Next-step Edits
When a student attempts the task, they generate a trajec-
tory of partial solutions denoted as ξ = (s0, s1, s2, . . . , sk)
where k is the trajectory length. Here, s0 is the empty
code, and sk is the student’s latest/current partial solution.
Upon reaching sk, the student might be stuck and is unable
to decide how to proceed. Our goal is to help this student
by providing feedback as the next-step hint a ∈ Ask in the
form of an edit that allows the student to make progress.
Figure 1c shows one such partial solution sk and Figure 1d
(left) shows the next-step hint that could be provided.

Formally, the next-step hint policy π(· | ξ) provides a prob-
ability distribution with support over actions Ask where sk
is the last partial solution in the trajectory ξ. Note that
when a policy depends on the whole trajectory ξ, then it
can infer the knowledge of the student based on this tra-
jectory and can provide personalized hints. However, the
existing hint policy techniques discussed in Section 1 con-
sider myopic policies. A myopic policy π(· | sk) provides a
probability distribution with support over actions Ask and
takes as argument only the last partial solution sk (i.e., ig-
noring the trajectory of how student reached sk). In our
work, we also focus on learning such a myopic hint policy.

2.3 Evaluation Criteria
As an evaluation criterion, we use the standard approach
in literature (e.g., see [23, 20]) where the performance of
a hint policy is measured in terms of prediction accuracy.
We assume access to a set of expert annotations given by
Dhints = {(si, N(si)}i=1,2,...,n: here, for a partial solution
si ∈ S, the experts have annotated that the next partial so-
lution where a student should transition to should be among
the set N(si) ⊆ S. In our experiments, we will use the pub-
licly available annotation dataset from [23] for evaluating
hint policy on HOC tasks. For a policy π, we use the fol-
lowing notion of unweighted prediction accuracy:

1

n

n∑
i=1

( ∑
a∈Asi

π(a | si) · 1
(
si ⊕ a ∈ N(si)

))
(1)

where 1(.) represents an indicator function (cf. [23] which
uses a notion of accuracy weighted by frequency). Note that,
this measure of prediction accuracy does not capture the
long-term pedagogical value of providing hints to students,
and we further discuss this as future work in Section 5.

3. LEARNING HINT POLICY USING RL
In this section, we present our approach to zero-shot learning
of hint policy via reinforcement learning (RL) framework.

3.1 RL Framework
3.1.1 Hint policy learning environment as an MDP

In reinforcement learning, a learning algorithm (agent) in-
teracts with an environment typically modelled as a Markov
Decision Process (MDP). Here, we present the MDP corre-
sponding to the problem of learning hint policy. We define
the MDP M = (S,A, P,R, S0) as follows:

• S corresponds to the set of partial solutions;

• A = ∪s∈SAs is the set of all possible actions, and As is the
set of actions or edits possible in state s;

• P : S × A × S → R denotes the transition dynamics.
P (s′ | s, a) is defined only for a ∈ As. We have P (s′ | s, a) =
1 for s′ = s⊕ a, and 0 otherwise.

• R : S × A → R denotes the reward function. R(s, a) is
defined only for a ∈ As. A simple reward function could
be to set a small negative reward for every action taken
and a high reward for reaching the correct solution termed
as “goal” (i.e., when s ⊕ a = s∗). We will discuss more
about designing rewards in Section 3.3.

• S0 ⊆ S is the set of initial states. This corresponds to the
states which would be used to initialize an episode when
training the hint policy. One way to pick set S0 is to ran-
domly sample states from S, limited to some upper limit
on the code size.

We consider an episodic, finite horizon learning setting [29,
26]: A learning episode starts with an initial state s0 sam-
pled at random from the set S0, then the agent interacts
with the environment over discrete time steps t, and the
episode ends when one of the following happens: (i) either
the agent reaches goal state s∗, or the episode length exceeds
a pre-specified threshold (set to 20 in our experiments).

3.1.2 Policy gradient methods
While a variety of RL algorithms can be used to learn a pol-
icy, we consider policy gradient methods which have proven
to be highly effective for dealing with large-scale problems [29,
11, 4]. These methods learn a parametrized policy πθ(a | s)
where θ represents the parameters; then, a gradient ascent
method is employed to update parameters that would in-
crease the expected reward of the policy in the MDP. In our
work, we use a neural network to learn the policy, i.e., θ rep-
resents the weights of the network. Given a state s and ac-
tion a, the policy network parametrized by θ outputs a score
Hθ(a | s). Using these scores, we define the policy by the fol-

lowing softmax distribution: πθ(a | s) = expHθ(a | s)∑
a′∈As expHθ(a

′ | s) .

We use the classic REINFORCE policy gradient method
(see [29, 33]) to update the weights of the network. In an
episode, the RL agent performs an update as follows. First,
an initial state s0 is sampled, and then the policy πθ is exe-
cuted until the episode ends, thereby generating a sequence
of experience given by (st, at, rt)t=0,1,2,...L where L repre-
sents the episode length. Then, in this episode, for each
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Figure 3: Illustration of our approach to learning hint policy using RL. (a) shows the
module for generating neural code embedding using tree representation of code. For a
state s, the module outputs φ(s). (b) shows the module for our hint policy which uses
code embedding for state representation. Details are provided in Section 3.1 and 3.2.

t ∈ [0, L], we use the following gradient update with η as
learning rate:

θ ← θ + η ·
( L∑
τ=t

rτ

)
·
(
∇θ log

(
πθ(at | st)

))
︸ ︷︷ ︸

gradient at time step t in an episode

(2)

This gradient update can be computed efficiently for our
setting—we refer the reader to [33, 29] for detailed discus-
sion. We provide the implementation details in Section 4.2.

3.2 Efficient Learning of Hint Policy
3.2.1 Dealing with infinite state space

Figure 2 shows the number of states (unique partial solu-
tions) w.r.t. the size (number of blocks) of a partial solu-
tion. Here, for reference, we also show number of states
for a more complex language Karel [21]. Note that even
if the correct solution is of small size (e.g., 5 for HOC-18
and HOC-4 tasks), the struggling students end up writing
large partial solutions even up to 50 blocks length [23]. To
deal with this computational challenge of a very large state
space, we rely on code embeddings to have a featurized state
representation. In our work, we train code embedding in-
spired by recent developments in using structured RNNs for
embeddings, in particular Tree-RNN model by [22] used for
HCO-18 embeddings and Tree-LSTM model by [30]. We
represent the code as an Abstract Syntax Tree (AST) as
shown in Figure 3a, and then this tree structure is used to
process the blocks. When training, we require syntactic edit
distance between raw states to be preserved after the embed-
ding. In Section 4.2, we provide a more detailed description
of the process used to learn the code embedding.

3.2.2 Dealing with state-dependant action sets
In a typical RL setting, the action set A is finite, and the
standard architecture for training the network is to have φ(s)
as input and the scores Hθ(a | s) ∀ a ∈ A as output (i.e.,

output layer has R|A| size). In our setting, the action set A is
infinite, and the allowable actions from a state s given by set
As are state-dependant. To tackle this challenge, we use the
neural architecture as illustrated in Figure 3b. We train a
network which takes as input both φ(s) and φ(s⊕a). To eval-
uate the probability of taking action a from state s, we first
compute scores Hθ(a

′ | s) for all a′ ∈ As, and then probabil-
ity of action πθ(a | s) is given by the softmax distribution.

3.3 Incorporating Additional Knowledge
3.3.1 Designing rewards

We can easily incorporate additional human knowledge or
features into the policy by designing appropriate reward
functions [4, 11]. For instance, by changing the reward val-
ues R(s, a) based on the type of action a (e.g., deleting an
existing block vs. adding a new block), we can train a hint
policy that favours certain types of hints. One can further
incorporate more complex criterion such as suggesting hints
at the last line in the code to capture students’ current focus
of attention which is important for better interpretability of
hints [20]. Reward design also allows us to incorporate inter-
mediate partial solutions that serve as milestones toward the
final correct solution. By providing positive rewards for such
states representing milestones, our hint policy would auto-
matically learn to steer the students towards such states.
Furthermore, this approach can also help in speeding-up the
learning process of the RL algorithm by dealing with sparse
reward problem (see Section 4.2 on how we use this idea to
speed up the learning).

3.3.2 Bootstrapping from data when available
While we introduced RL framework to tackle the zero-shot
challenge, the proposed framework allows one to bootstrap
from additional student data if available from the same or
related tasks. In fact, the existing RL-based techniques used
in program synthesis and repair (see [4, 11]) have shown that
substantial performance gain and convergence speed-up can
be obtained by bootstrapping from available data.

We incorporate student data to bootstrap RL-based hint
policy as follows. Consider we have access to a set of tra-
jectories of successful students or experts who solved the
task, given by Ξ = {ξj}j=1,2,.... From these trajectories,
we can obtain dataset of edits made by successful students,
represented as Dtrain = {(si, si⊕ai)}i=1,2,.... The RL policy
network can be bootstrapped by additionally training from
Dtrain using cross-entropy loss. The gradient update is given
below where η′ represents the learning rate:

θ ← θ + η′ ·
( ∑

(s,s⊕a)∈Dtrain

∇θ log
(
πθ(a | s)

))
︸ ︷︷ ︸

gradient for cross-entropy loss

(3)

Further implementation details are provided in Section 4.2.



4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our RL-based
hint policy on a publicly available dataset from Code.org [5].

4.1 Hour of Code Tasks
We consider HOC-18 and HOC-4 tasks from the Hour of
Code (HOC) challenge by Code.org, the world’s largest pro-
gramming education platform [5, 23]. HOC-18 task, shown
in Figure 1, is an advanced task in HOC challenge with 7
different types of blocks (“move forward”, “turn left”, “turn
right”, “repeat until”, and “IF ELSE” with three different
types of conditionals). HOC-4 is a simpler task with only
3 types of blocks (“move forward”, “turn left”, “turn right”).
For the zero-shot setting, we do not require availability of
any student data for comparing different hint-policy tech-
niques (see Figures 4a and 4c for x = 0 on the x-axis).
Beyond zero-shot setting, we also evaluate the performance
when additional data becomes available (see Figures 4a and
4c for x = 9, 12, 15 on the x-axis). For these experiments, we
use the trajectories of successful students from the dataset
provided by [5, 23]. We refer the reader to [5, 23] for further
details about these tasks and the available dataset.

4.2 Implementation Details
Here, we briefly provide implementation details for the fol-
lowing: (i) code embedding, (ii) RL-based hint policy, and
(iii) three baselines. Some details are omitted because of lack
of space—the source code would be made publicly available
with the final version of the paper for reproducibility.

4.2.1 Code embedding
We learn a separate embedding for HOC-18 and HOC-4
tasks, and the code embedding is learnt prior to training
the hint policy. We begin by sampling 400 random states
limited to a size up to 6 blocks, and then use pairwise syn-
tactic edit-distance between these states to generate a train-
ing dataset containing triplets of the form

(
s, s′, dsynt(s, s

′)
)
:

here dsynt(s, s
′) represents the syntactic edit-distance be-

tween s and s′ in terms of the number of edits required to
convert s to s′. Given these triplets, we train a neural em-
bedding φ(.) so the ||φ(s)−φ(s′)||2 ≈ dsynt(s, s′). As shown
in Figure 3a, we use the Abstract Syntax Tree (AST) repre-
sentation of a state s which is then traversed in a preorder
depth-first way to produce a sequence of blocks. The result-
ing sequence is passed through bi-directional LSTM where
each unique block of the HOC language is encoded differ-
ently (cf., Tree-RNN model of [22] and Tree-LSTM model
of [30]). The size of the feature representation used for our

experiments is given by dimφ = 40, i.e., φ(s) ∈ R|40|.

4.2.2 RL-based hint policy
For the policy network, we use a 5-layer fully connected neu-
ral network with the following architecture: (i) the input
layer has 2× dimφ units for φ(s) and φ(s⊕ a); (ii) the first
three hidden layers have 128 hidden units and the fourth hid-
den layer has dimφ hidden units; and (iii) the output layer
linearly aggregates dimφ values from the last hidden layer
to produce the score H(a | s). All hidden units use ReLU
activations with a dropout rate of 0.1, and we use ADAM
optimizer for training [13]. The policy actions are taken us-
ing a softmax distribution as discussed in Section 3. Below,
we discuss the rewards and stopping criteria used for train-

ing, separately for zero-shot setting and when bootstrapping
from available student data:

• Zero-shot learning setting: We set reward R(s, a) as +100
when s ⊕ a = s∗, and −1 otherwise. The training is done
until the average reward of the policy is saturated. To
further speed up the convergence, we use intermediate re-
wards in the training process by adding an additional term
of −dsynt(s⊕a, s∗) to the reward. Here, dsynt represents the
syntactic edit-distance between two states (same function
as used in generating training data for code embedding).
These intermediate rewards during the training process al-
lowed us to speed up the convergence by order of mag-
nitude, without effecting the overall performance of the
trained policy. After this speed up, the number of episodes
required until convergence varied from 5000 to 20, 000.

• Additional student data is available: We first pre-train the
network using cross-entropy loss with the data sampled
from Dtrain. This pre-training is done for 20 epochs where
each epoch consists of multiple gradient updates as follows:
A batch of data is sampled from Dtrain of size given by
batchsz = 32 and a gradient update is performed using this

batch as per Eq. 3; this process is repeated |Dtrain|
batchsz

within
an epoch. After this pre-training phase, we train the policy
network using rewards for 2000 episodes using the gradient
updates in Eq. 2. Given that the pre-training phase already
provides a good initialization of the policy network, we
used modified reward signals in this case as compared to
the zero-shot setting: (i) we set reward of +20 for reaching
the goal instead of +100 and (ii) we reduced the value of
intermediate rewards and set it to −0.05 · dsynt(s ⊕ a, s∗)
by scaling it down.

4.2.3 Baselines
We compare our RL-based hint policy Reinforce-HP w.r.t.
several baselines as discussed below. In particular, we con-
sider baseline techniques which can be implemented effi-
ciently, without requiring any explicit graph representation
of the state space which is computationally intractable (also,
see Figure 2).

As a simple benchmark, we use Random-HP: a baseline
policy that simply selects an action a ∈ As randomly when
providing a hint for state s. As another natural baseline, we
consider FreqNext-HP which uses historical student data
as follows. Based on the available data, a frequency count
count(s, a) is maintained for each (s, a) pair counting the
number of times action a was taken from state s by students
in the historical data. Then, when providing hint for a state
s, the hint is chosen from a distribution given by the follow-

ing softmax distribution: P (a|s) =
exp
(
1+count(s,a)

)
∑
a′∈As exp

(
1+count(s,a′)

) .

Next we discuss a baseline based on the state of the art
technique of Continuous Hint Factory (CHF) [20] that uses
supervised learning approach. We adapt the key ideas of
CHF to our setting and refer to the resulting hint policy as
Regression-HP—this adaption allows us to directly com-
pare Reinforce-HP with Regression-HP as both these
hint policies use the same embedding and same historical
data when available. Below, we discuss three key steps re-
quired in training Regression-HP:
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Figure 4: (a) shows prediction accuracy for HOC-18 task. x = 0 on the x-axis corresponds to the zero-shot setting.
Reinforce-HP achieves over 20% absolute improvement in the prediction accuracy compared to baselines. (b) shows results
for HOC-18 task when states are binned into “Head” and “Tail” based on frequency counts, and a moderate amount of histor-
ical student data is available (see details in Section 4.3). Reinforce-HP performance on low-frequency states is even higher
than the overall performance of any of the baselines. (c, d) shows the results for simpler task of HOC-4.

• Embedding (cf. Section 3.1 of [20]): For Regression-HP,
we use the same code embedding as used for Reinforce-
HP. Our code embedding is similar to the Euclidean em-
bedding space used by [20] which was obtained by preserv-
ing syntactic distances between raw states.

• Regression function (cf. Section 3.2 of [20]): Then, we
learn a regression function in the embedding space which
can identify the most likely hint as a vector in this space.
This step makes use of available student data Dtrain as
discussed in Section 3.3, and learns a function freg that
can map φ(s) to φ(s ⊕ a) for (s, s ⊕ a) ∈ Dtrain. We use
neural network to learn this function freg, in contrast, [20]
used Gaussian process regression. We use a 4-layer neural
network to learn freg with essentially the same architecture
as the one used to learn Reinforce-HP, except that (i)
the input layer has dimφ units for φ(s), (ii) the output layer
here has dimφ units to produce φ(s⊕ a) (this corresponds
to what was the last hidden layer in Reinforce-HP neural
architecture).

• Human-readable hint (cf. Section 3.3 of [20]): Finally,
when providing hint for a state s, we first compute the
hint in embedding space as freg(φ(s)) and then convert
this to an editable hint a ∈ As as the one that minimizes
||freg(φ(s))− φ(s⊕ a)||2.

4.3 Results
Figure 4 shows the results for HOC-18 and HOC-4 tasks, av-
eraged over 3 runs of all the hint policies. Figures 4a and 4c
show the overall average prediction accuracy. The x = 0
point in these plots corresponds to the zero-shot setting and
measures the prediction accuracy of next-step hint for the
very first student who is attempting the task. For both
HOC-18 and HOC-4 tasks, our RL-based policy Reinforce-
HP has a significant improvement over baselines by about
20% gain in absolute accuracy. For the HOC-18 task, even
when a moderate amount of data becomes available (e.g.,
see x = 9 on the plot which is equivalent to data of 511 stu-
dents), Reinforce-HP improves w.r.t. Regression-HP by
10% gain in absolute accuracy.

In Figures 4b and 4d, we further analyze the performance
of different hint policies when training using a moderate
amount of available data (corresponding to x = 9 in Fig-

ures 4a and 4c which is equivalent to data of 511 students).
In these plots, states are binned into“Head”and“Tail”based
on frequency counts as available in the dataset obtained from
[23]. Here, the bin “Head” corresponds to top 40 states and
“Tail” corresponds to bottom 40 states based on frequency.
For HOC-18 task, Reinforce-HP performance on low fre-
quency states is even higher than the overall performance of
any of the baselines: this hightlights the power of RL frame-
work that allows an efficient self-exploration of the solution
space when learning the hint policy. These plots also illus-
trate that techniques such as FreqNext-HP that rely on
frequency counts can have much worse performance on the
tail segment of states compared to head segment of states.

In summary, these results demonstrate that the proposed
RL framework enables us to learn an effective hint policy in
the zero-shot setting, and the performance can be further
improved with the availability of student data.

5. CONCLUSIONS AND FUTURE WORK
We tackled the challenge of zero-shot learning of hint policy
to be able to provide hints for the very first student working
on a coding task. Building on the recent advances in RL-
based neural program synthesis, we proposed an RL frame-
work for learning hint policy. Using a publicly available
dataset from Code.org, we showed that our policy achieves
significant improvements over state of the art supervised
learning techniques when no or very limited data is available.
Furthermore, the results demonstrated that our proposed
framework is easily amendable, e.g., it can benefit from his-
torical student data to further boost the performance.

There are several research directions for future work. As
an evaluation criterion, we used the prediction accuracy of
next-step hints based on expert annotations. In future work,
it would be important to do user studies and understand the
pedagogical value of these hints. In this work, our hint policy
provided hints based on only the current partial solution of
the student. It would be important to learn a richer hint
policy that can provide personalized hints by accounting for
the whole trajectory of the student. Finally, it would be
interesting to apply our framework to more complex learning
scenarios (e.g., with more complex coding tasks or with a
more complex language involving additional concepts such
as the ability to declare variables).
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