
Quizzing Policy Using Reinforcement Learning
for Inferring the Student Knowledge State

Joy He-Yueya
University of Washington

joyhe@cs.washington.edu

Adish Singla
MPI-SWS

adishs@mpi-sws.org

ABSTRACT
The prevalence of online education systems provides oppor-
tunities to deliver personalized learning at scale. Educa-
tional systems need to assess students so that they can pro-
vide better curricula tailored to each student’s unique needs.
Since there is a limited amount of time for quizzing a stu-
dent, we need to test each student using those questions
that capture the most information about their level of un-
derstanding of various concepts. In this paper, we formally
pose the problem and present multiple approaches for learn-
ing a quizzing policy to determine a personalized sequence of
questions for each student that best predicts their knowledge
state. We first introduce simple heuristics including random
selection and an uncertainty sampling approach inspired by
an active learning framework. We then develop a reinforce-
ment learning (RL) approach for designing a quizzing policy.
Using simulations of students’ knowledge states, we provide
initial evidence that an RL-based approach can improve over
simple heuristics. We further demonstrate the effectiveness
of our approaches using a real-world dataset consisting of
over 1.5 million examples of students’ answers to mathe-
matics questions from Eedi, an online educational platform.

Keywords
reinforcement learning, knowledge state, quizzing policy

1. INTRODUCTION
Online education systems are making high-quality educa-
tion more accessible for students across the globe. These
systems provide various educational resources such as in-
structional videos and exercises. To provide personalized
curricula for improving the learning outcomes of students,
an online education system needs to accurately infer each
student’s knowledge state (i.e., their level of understanding
of various concepts) by quizzing them. This is a challeng-
ing task because the quizzing time is limited. To make the
most efficient use of each student’s time, it is important to
prioritize those questions that reveal the most information

about the student’s knowledge.

We focus on a specific goal for student assessment: given a
limit to the number questions we are allowed to ask each stu-
dent, how can we determine a sequence of questions for each
student that best predicts their knowledge state? Specifically,
when an education system needs to assess a student for in-
ferring their knowledge, the system suggests a personalized
question to query for the student and gets their response
to the question. Based on the student’s response history
(i.e., a sequence of question-response pairs), the system se-
lects another question to query for the student until it has
exhausted its query budget (i.e., the maximum number of
queries allowed). We refer to the function that provides the
next question to query based on students’ response histories
as quizzing policy (QP).

We define the task of learning a QP in the context of the
NeurIPS 2020 Education Challenge [27] launched by Eedi
[6], an online educational platform with thousands of ac-
tive users daily around the globe. We consider a set of 948
multiple-choice mathematics questions that correspond to
57 different concepts. Specifically, the task is to obtain a
limited set of answers from each student for inferring the
student’s knowledge on the 57 concepts and then predict
the student’s performance on unseen questions based on the
inferred knowledge state.

The key challenge in designing a QP is related to a cru-
cial task in machine learning: active learning (AL). For
many learning tasks (e.g., image classification, text classi-
fication), obtaining sufficient labeled data for training high-
performance models is costly [16, 18, 32]. AL aims to reduce
the amount of annotated data needed by having the model
carefully select which data points should be labeled.

Existing methods for AL include heuristics such as select-
ing the data points about which the model is most uncer-
tain (i.e., uncertainty sampling) [15, 26, 31, 24], picking
the instances about which a set of possible different mod-
els disagree the most (i.e., query by committee) [23, 10], or
choosing the example that can lead to the most immediate
improvement in model performance (i.e., estimated error re-
duction) [22, 12].

In addition to these heuristics for AL, recent studies [30,
19, 9] have explored how to use reinforcement learning (RL)
to learn the AL strategy itself. RL [20, 25] is a powerful

framework where an agent learns how to make good deci-
sions (actions) in different situations (states) through trial
and error. In the RL terminology, the action space provides
the set of actions that can be taken by the RL agent at a
given point in time; the state space defines the “state of the
world” that is visible to the RL agent; and the reward func-
tion assigns a value to the outcome of each action taken by
the RL agent. In this case, the set of possible instances to
be labeled defines the action space; the state space is a rep-
resentation of the sequence of instances that have already
been annotated; and the gain in prediction accuracy as a re-
sult of an action defines the reward. The RL agent learns to
improve its decision-making over time based on the reward
signals it receives. Inspired by these studies, we investigate
using RL to learn a QP for personalized student assessment.

1.1 Our approach and contributions
In this paper, we formalize the problem of learning a QP for
inferring the student knowledge state and present several
different approaches including simple heuristics and an RL-
based approach. Our contributions are:

• We formulate the problem of learning a QP to infer stu-
dent knowledge.

• We propose simple heuristics (i.e., random selection, un-
certainty sampling) and an RL-based approach for learn-
ing a QP.

• We evaluate the performance of different QPs on a syn-
thetic dataset and a publicly available dataset consisting
of over 1.5 million examples of students’ answers to math-
ematics questions from Eedi.

For the reproducibility of experimental results and facilitat-
ing research in this area, the code and dataset are publicly
available.1

1.2 Related work
AL is a popular methodology in machine learning that aims
to reduce the amount of annotated data needed by hav-
ing the model carefully select which data points should be
labeled. The task of designing a QP is closely related to
AL because the goal is to optimally select a set of ques-
tions to ask students to gain the most information about
their knowledge states. Uncertainty sampling [15, 26, 31,
24] is one of the most popular heuristics for AL because it is
straightforward and computationally efficient. Specifically,
it suggests labeling instances that are closest to the model’s
decision boundary (i.e., the most uncertain). Woodward and
Finn [30] propose the first application of RL to the task of
AL for image classification. Other studies [19, 9] explore
how to train an AL policy that can generalize across diverse
datasets.

RL has also been applied to various tasks in education such
as learning an instructional policy [2, 3, 5, 13, 17, 21, 28],
learning a hint policy for helping students solve multi-step
problems [7], and generating new educational tasks [1]. We
introduce a different policy, a quizzing policy for inferring
the student knowledge state, which has not been designed
using RL in previous literature.

1https://github.com/joyheyueya/quizzing-policy

c2 c3

c5 c6

c4

c1

Figure 1: Graphical representation of knowledge. This is
an example of an undirected graph where each node (circle)
represents a concept, and each edge connects a pair of similar
concepts: c1 is an independent concept, c2 and c3 are similar,
and c4, c5, and c6 are similar.

There is prior work on the efficient assessment of knowledge
[8]. Our student knowledge model is inspired by the knowl-
edge components (i.e., concepts / skills) used in Bayesian
Knowledge Tracing (BKT) [4], which represents the state
for each knowledge component as a binary variable: 1 if the
knowledge component is known, 0 otherwise.

2. PROBLEM FORMULATION
In this section, we formalize the problem of learning a quizzing
policy (QP) for inferring the student knowledge state.

2.1 Student knowledge state
Our goal is to infer student knowledge on a set of n con-
cepts C = {c1, ..., cn} associated with a set of m questions
X = {x1, ..., xm}. For simplicity, each question corresponds
to a single concept, but each concept might be associated
with more than one question (m >> n). A student’s knowl-
edge state h is defined as h = [v1, ..., vn] where v1, ..., vn are
binary variables that indicate whether or not the student
knows each concept in C: vi = 1 if ci is known, and vi = 0
otherwise. Formally, we define a hypothesis space H for all
possible knowledge states: H = {0, 1}n. We assume h is
fixed during the assessment.

2.2 Graphical representation of knowledge
We consider two assumptions that are useful for inferring
the student knowledge state: 1) difficult concepts are more
likely to be unknown, and easy concepts are more likely to
be known; 2) similar concepts are more likely to have the
same value (i.e., a student who knows one concept is also
likely to know the other concepts that are similar to the one
that is already known). These influences can be represented
by an undirected graph where each node corresponds to a
concept, and each edge connects a pair of concepts that are
similar (see Figure 1). In the Eedi dataset (described in
Section 4.2.1), we consider every pair of concepts that share
the same super-concept to be similar (e.g., there is an edge
between “Rearranging Formula and Equations” and “Substi-
tution into Formula” because they are both under the same
super-concept “Formula”). Based on this graphical struc-
ture, we model a student’s knowledge state using a Markov
Random Field (MRF).

An MRF is a probability distribution over a set of vari-
ables that satisfy certain properties defined by an undirected
graph. In our case, we define a probability distribution
p over binary variables v1, ..., vn defined by an undirected
graph G = (V ∪ F,E) where V is the set of nodes (con-

https://github.com/joyheyueya/quizzing-policy

cepts), F is the set of factors that define a set of functions
over the variables that they are connected with, and E is
the set of edges (see Figure 2).

An MRF allows us to calculate the probability of each way of
assigning values to binary variables v1, ...vn, which represent
the knowledge state of the corresponding concepts c1, ..., cn.
The probability p has the form:

p(v1, ..., vn) =
1

Z

∏
ψα∈F

ψα(vα) (1)

where α represents a subgraph of G, and ψα denotes a factor
that defines a non-negative function over the set of variables
vα in α. Z is a normalizing constant that ensures the distri-
bution sums to one:

Z =
∑

v1,...vn

∏
ψα∈F

ψα(vα) (2)

We specify factors for an MRF based on two assumptions
about variables v1, ..., vn. For our first assumption that dif-
ficult concepts have a higher probability of being unknown,
we define unary factors:

ψi(vi) =

{
1− difficultyci if vi = 1

difficultyci otherwise

where difficultyci is a real number that represents the dif-
ficulty of the concept ci that vi corresponds to, and 0 ≤
difficultyci ≤ 1. A higher difficultyci value means ci is more
difficult.

For our second assumption that variables corresponding to
similar concepts are more likely to have the same values,
we define binary factors between every pair of nodes (vi, vj)
that are connected by an edge in graph G:

ψ{i,j}(vi, vj) =

{
influence if vi = vj

1− influence otherwise

where influence represents a constant that satisfies 0.5 ≤
influence ≤ 1. A greater influence value means we want to
assign a higher probability to an assignment that gives the
same values to variables corresponding to similar concepts.
In our work, we fix influence to be 0.7. We also tried similar
values, and they lead to similar results.

2.3 Quizzing policy for knowledge inference
Since there is a cost associated with each question we query
students (e.g., time, student’s energy), we need to select a
limited number of questions that reveal the most about their
knowledge state. Thus, student knowledge prediction can
be framed as a pool-based active learning (AL) task with a
given query budget T . For simplicity, we assume querying
each exercise leads to the same cost and define T to be the
total number of queries we are allowed.

We describe the AL framework in detail, see Algorithm 1.
At a given time step t, we have a labelled set L that con-
sists of all the questions we have asked the student and their
responses. Formally, L = {(xi, yi)}ti=1 where xi ∈ X, and
yi ∈ {0, 1} is the student’s response to xi (yi = 0 if the
response is incorrect, yi = 1 if the response is correct). We

𝑣2 𝑣3

𝑣5 𝑣6

𝑣4

𝑣1

ψ2

ψ{2,3}

ψ4

ψ{4,5} ψ{4,6}

ψ{5,6}
ψ3

ψ1

ψ5 ψ6

Figure 2: Modeling graphical student knowledge using
MRF. This models the knowledge representation in Figure
1 as a factor graph. Each node vi is a binary variable that
represents the knowledge state of the corresponding concept
ci. Factors are represented by rectangles. There is a unary
factor for every node and a binary factor between every pair
of nodes connected by an edge to model the dependency
between variables.

also have an unlabelled set U consisting of all the questions
that we have not asked). Based on L, we have a belief Bh
about the student’s knowledge h. Formally, Bh = [b1, ..., bn]
where bi is the probability of knowing the concept ci (i.e.,
vi = 1 with a probability of bi). We define Binary(Bh)
as a function that converts probabilities into binary values
using a threshold of 0.5 (1 if bi ≥ 0.5 and 0 otherwise).
Binary(Bh) gives the inferred binary knowledge state. We
update Bh based on L by running the Loopy Belief Propaga-
tion algorithm (LBP) [11] on our graph defined in Section
2.2. LBP takes L as input and outputs the probabilities
b1, ..., bn (0 ≤ bi ≤ 1). Additionally, we have a QP that
takes Bh as input and outputs the next question to ask the
student. Specifically, a policy π(·|Bh) provides a probability
distribution with support over all questions in U given Bh.
We can then sample a question from π(·|Bh).

Algorithm 1: Active learning for inferring knowledge

Input: budget T , quizzing policy π
Output: ĥ
Initialize L0 ← ∅, U0 ← {xi}mi=1

for t = 1, 2, 3, . . . , T do
Bht = LBP(Lt−1)
xt ∼ π(·|Bht)
Lt ← Lt−1 ∪ (xt, yt)
Ut ← Ut−1\xt

end

ĥ← Binary(BhT)

Algorithm 1 runs as follows: at each time step t, we first
get our current belief Bht based on the previously labelled
set Lt−1 (i.e., the set of all the questions we have asked the
student before time step t and their responses). We then
select a question xt from the previously unlabelled set Ut−1

to ask the student by sampling from π(·|Bht), which defines
a probability distribution with support over all questions in
Ut−1 given Bht . Then, we update Ut−1 to Ut by removing xt

from Ut−1 and update Lt−1 to Lt by adding xt and its label
yt to Lt−1. The quizzing process terminates when the query
budget is exhausted. In this work, we fix T = 10 as required

by the NeurIPS 2020 Education Challenge [27]. The final

output of the algorithm ĥ is the student’s knowledge state
at time step T , which is inferred based on BhT .

2.4 Evaluation
We evaluate our QPs using two methods. First, we create a
synthetic dataset consisting of simulated students (see Sec-
tion 4.1). We predict each student’s knowledge state using

Algorithm 1. Given a prediction result ĥ, we calculate the
prediction accuracy using the following equation:

Acc(ĥ) =
1

n

n∑
i=1

1(ĥ[i] = h?[i]) (3)

where h? is the actual knowledge state.

Second, we apply our QPs to the NeurIPS 2020 Education
Challenge (see Section 4.2). The challenge is to obtain a
limited set of answers from each student for predicting the
correctness of their answers to the remaining questions. Our
approach to this challenge is to first infer a student’s knowl-
edge state using Algorithm 1 and then predict the student’s
responses to the remaining questions based on the inferred
knowledge state. Specifically, we design an additional model
(see Section 4.2.2) that takes in our belief about the stu-
dent’s knowledge state at the final time step BhT and out-
puts the student’s response to each of the m questions. For-
mally, the vector Ŷ ∈ Rm denotes the output of the model.
We calculate the prediction accuracy as:

Acc(Ŷ) =
1

|UT |
∑
xi∈UT

1(Ŷ[i] = Y?[i]) (4)

where UT is the set of unlabelled questions at the final time
step (unseen by the model), Y?[i] is the student’s actual

response to xi, and Ŷ[i] is the predicted response.

3. DESIGNING QUIZZING POLICIES
In this section, we present heuristics-based approaches and
a reinforcement learning (RL)-based approach to designing
a quizzing policy (QP) that takes in a belief Bh about a
student’s knowledge state and outputs the next question to
ask the student.

3.1 Heuristic approaches
We present two simple heuristics for designing a QP: random
selection (QP-Random) and uncertainty sampling (QP-
Uncertain). QP-Random is straightforward: we always
randomly select a question from the unlabelled set U (i.e.,
π(a|Bh) = 1

|U| for each a ∈ U). QP-Uncertain suggests

picking a question corresponding to a concept that our cur-
rent model is most uncertain about (i.e., the concept with a
probability of being known that is closest to 0.5). Formally,
we define:

b? = arg min
bi∈Bh

|bi − 0.5|

We first pick a concept c? with a probability of being known
that is equal to b?. We break ties randomly. We define Uc?
as the set of questions that have not been asked and are
associated with c?. We then define the policy:

π(a|Bh) =

{
1
|Uc? |

if a ∈ Uc?
0 otherwise

𝜃Bht 𝜋𝜃(a|st)LBP
(𝑥1 , 𝑦1)
(𝑥2 , 𝑦2)

…
(𝑥t-1 , 𝑦t-1)

at = 𝑥t
rt

(𝑥t , 𝑦t) student

Figure 3: QP-RL approach.

3.2 RL-based approach
We now propose an RL-based approach (QP-RL) for learn-
ing a QP. An RL agent learns how to make good decisions
over time by interacting with an environment that is typi-
cally modeled as a Markov Decision Process (MDP). In our
problem setting, we define the MDP M = (S,A, P,R, s0) as
follows:

• The state space S is the set of beliefs Bh about student
knowledge (i.e., S = {[b1, ..., bn]|0 ≤ bi ≤ 1});

• The action space A is the set of questions that have not
been asked;

• The transition dynamics P : S × A × S → R define the
probability of transitioning from one state to another by
taking a particular action. In our case, we transition to
state st+1 from st based on the student’s response yt.

• The reward function R : S ×A× S → R is defined as the
difference in prediction accuracy between the current time
step and previous step: for predicting student knowledge,
given the inferred knowledge state ht+1 after taking action
at, we calculate the reward for time step t as Acc(ht+1)−
Acc(ht);

• The initial state s0 corresponds to the initial belief about
student knowledge: each concept has a 0.5 probability of
being known.

Figure 3 shows an overview of the QP-RL approach. For
training the RL agent, we consider an episodic, finite-horizon
setting. During each episode, we train on one student’s data,
and the length of the episode is the query budget T . At each
time step t, we run the LBP algorithm that takes in the
student’s response history Lt−1 = {(xi, yi)}t−1

i=1 to update
our belief about the student’s knowledge state Bht . Then,
the RL model, which is a neural network with parameters
θ, takes Bht as input (i.e., st = Bht) and outputs a vector
pc ∈ Rn which represents the probability of selecting a ques-
tion corresponding to each of the n concepts. We first select
a concept ci by sampling based on pc and then randomly
select one question from Uci (a set of questions that have not
been asked and are associated with ci). We then define the

final policy parametrized by θ: πθ(a|Bht) = pc[i]
|Uci |

for ci ∈ C
and a ∈ A. Our policy πθ(a|Bht) allows us to select the
next question to query and add the next question-response
pair (xt, yt) to the response history. We then update Bht
based on the updated response history using the LBP al-
gorithm. We calculate the reward for the current time step
rt = Acc(Binary(Bht+1))−Acc(Binary(Bht)).

We use REINFORCE policy gradient method [25, 29] to
learn our policy πθ parametrized by θ. In each episode cor-
responding to a single student, the RL agent performs an
update as follows. First, an initial state s0 (the initial belief
that each concept has a 0.5 probability of being known by
the student) is generated. Then, the policy πθ is executed
until the episode ends, generating a sequence of experience
given by (st, at, rt)t=1,2,...,T . Then, in this episode, for each
t ∈ {1, 2, ..., T}, we use the following gradient update with
η as learning rate:

θ ← θ + η ·
(T∑
τ=t

rτ

)
·
(
∇θ log

(
πθ(at | st)

))
︸ ︷︷ ︸

gradient at time step t in an episode

(5)

In experiments, we use the architecture used in [7]. Specifi-
cally, the policy network is a 3-layer fully connected neural
network with the following architecture: the input layer has
n = 57 units for Bh; the first and second hidden layers
have 128 hidden units; and the output is a vector pc ∈ Rn
where n = 57 to produce a probability of selecting each of
the 57 concepts. The first two hidden layers use ReLU ac-
tivations, and the final layer uses the softmax function to
ensure probabilities sum to 1. We use ADAM [14] optimizer
for training.

4. EXPERIMENTAL EVALUATION
We first evaluate and compare our quizzing policies (QPs)
using a synthetic dataset. We then apply our QPs to the
Eedi dataset from the NeurIPS 2020 Education Challenge.

4.1 Simulations
We simulate virtual students taking the assessment quiz and
test how well we can predict students’ knowledge states in
a controlled setting using different QPs.

4.1.1 The synthetic dataset
We generate a dataset consisting of 24, 000 simulated stu-
dent knowledge states. To do so, we first construct a graph
for representing the student knowledge state that we aims
to infer (see Section 2.2) and then get a probability distri-
bution over the binary variables in the knowledge state that
satisfies a set of assumptions about the student’s knowledge.
We then sample ground-truth student knowledge state val-
ues from the probability distribution. In this simulation, we
use the same 57 concepts in the Eedi dataset (described in
Section 4.2.1) for constructing the graph. We assume some
of these concepts have different levels of difficulty, and simi-
lar concepts are more likely to be assigned the same knowl-
edge state values.2 Based on these assumptions, we assign
a value of difficulty to each of the 57 concepts. We define
difficultyci = 1− the average correctness of the concept ci
2Although our assumptions might not hold in a real-world
setting, the goal of this experiment is to compare differ-
ent QPs and investigate the potential of QP-RL for learn-
ing a strategy tailered to a pre-defined knowledge struc-
ture. For instance, compared to the heuristic approach QP-
Uncertain, QP-RL should learn to select the questions
that are not only uncertain but can also give more infor-
mation about other questions that are not selected (e.g.,
selecting questions corresponding to concepts that are con-
nected with a lot of the other concepts).

Table 1: Test performance of different QPs on the syn-
thetic dataset. QP-Uncertain achieves a better perfor-
mance than QP-Random, and QP-RL improves over QP-
Uncertain significantly.

QP Accuracy
QP-RL 0.721± 0.004

QP-Uncertain 0.700± 0.002
QP-Random 0.675± 0.003

0 5000 10000 15000 20000
Number of episodes

0.64

0.66

0.68

0.70

0.72

Cu
m

ul
at

iv
e

av
er

ag
e

ac
cu

ra
cy

QP-RL
QP-UNCERTAIN
QP-RANDOM

Figure 4: Training performance of QP-RL on the synthetic
dataset compared to heuristics. QP-RL improves over QP-
Random and QP-Uncertain after about 6, 000 episodes of
training. The cumulative average accuracy at each episode
is calculated as the average accuracy across all previous
episodes. It is important to note that QP-Random and
QP-Uncertain are fixed policies that are not being trained.
The cumulative average accuracy for the first few episodes
might seem noisy due to small sample size.

across all students’ answers in the Eedi dataset.3 We run
the LBP algorithm on the constructed graph to get a proba-
bility distribution from which we sample student knowledge
states. Specifically, the output of the LBP algorithm gives
the probability of knowing each concept, and we sample val-
ues of 0 or 1 for each concept to generate the ground-truth
student knowledge states in our synthetic dataset.

4.1.2 Results
We split the dataset into 23, 000 students as the training
set and 1, 000 students as the test set. We train QP-RL
until the cumulative average accuracy converges. Figure
4 shows the training performance of QP-RL compared to
fixed heuristics. After training, we run each QP 10 times
on the test set to calculate the average accuracy and stan-
dard deviation across these 10 trials, see Table 1. Although
QP-RL leads to a 2% gain in accuracy compared to QP-
Uncertain, it requires a moderate amount of training data
(> 6, 000 students in this case). QP-Uncertain is a less
optimal strategy but can achieve a reasonably good per-
formance without any training data. These results provide
initial evidence that QP-RL can learn an effective QP, and
the performance can be improved further with more data.

3For simulations, one could also try other difficulty values,
but it does not matter which specific difficulty value we as-
sign to each concept because the goal is to model a setting
where we have concepts of varying levels of difficulty.

Figure 5: An example of a question in the Eedi dataset
[27]. For each multiple-choice question, exactly one choice
is correct.

4.2 NeurIPS 2020 Education Challenge
We then apply our QPs to one of the tasks in the NeurIPS
2020 Education Challenge (see Section 4.2), which is to ob-
tain a limited set of answers from each student for predicting
the correctness of their answers to the remaining questions.
Our approach to this challenge is to first infer a student’s
knowledge state using Algorithm 1 and then predict the stu-
dent’s responses to the remaining questions based on the
inferred knowledge state.

4.2.1 The Eedi dataset
The Eedi dataset contains student responses to multiple-
choice questions (see Figure 5) on various math topics, which
was collected between September 2018 and May 2020. It
contains 948 questions and a total number of 1, 508, 917 re-
sponses to these questions from 6, 148 students. The dataset
is split into the training set (4918 students), the validation
set (615 students), and the test set (615 students).

Each question in the dataset is associated with a list of sub-
jects. Each subject covers an area of mathematics. These
subjects are arranged in a tree structure by experts based
on the generality of the subjects. For instance, “Fractions”
is the parent subject of “Multiplying Fractions” and “Simpli-
fying Fractions”. For simplicity, we only consider the most
granular subject (i.e., the leaves in the tree) as the concept
that each question corresponds to. The 948 questions cor-
respond to 57 unique concepts. We consider concepts that
share the same super-concept (i.e., parent) to be similar (see
Figure 1).

4.2.2 Student performance prediction
To predict a student’s responses to unseen questions based
on the inferred knowledge state, we propose a neural network-
based model that takes in the belief about the student’s
knowledge BhT at time T = 10 (our belief about their
knowledge after we have asked 10 questions) and outputs
the probability of answering each of the 948 questions in
the dataset correctly. The student performance prediction
model is a 3-layer fully connected neural network with the

Table 2: Test performance different QPs on the Eedi dataset.
QP-RL improves slightly over QP-Uncertain.

QP Accuracy
QP-RL 0.690± 0.005

QP-Uncertain 0.680± 0.003
QP-Random 0.684± 0.003

following architecture: the input layer has n = 57 units for
BhT ; the first hidden layer has 256 hidden units; the sec-
ond hidden layer has 512 units; and the output is a vector
Ŷ ∈ Rm where m = 948 to represent the probability of cor-
rectness for each of the 948 questions. The first two hidden
layers use ReLU activations, and the final layer uses the sig-
moid function to ensure the output values are between 0 and
1. We use ADAM [14] optimizer for training. We convert
the output probabilities into binary values of 0 or 1 (0 if the
probability is less than 0.5, 1 otherwise) and calculate the
prediction accuracy using Equation 4. We train the model
using randomly selected queries until the validation accu-
racy converges. The model parameters are updated based
on binary cross-entropy loss.

4.2.3 Results
Given a trained performance prediction model from Section
4.2.2, we then train QP-RL using the difference in final
prediction accuracy between time steps as reward signals:
rt = Acc(Binary(Ŷt)) − Acc(Binary(Ŷt−1)). After train-
ing, we run each QP 10 times on the test set to calculate the
average accuracy and standard deviation across these 10 tri-
als. Table 2 shows that QP-RL improves slightly over QP-
Uncertain, but the difference between QP-RL and QP-
Random is not significant. Results in Section 4.1.2 show
that in a more controlled setting, QP-RL already requires a
moderate amount of training data (> 6, 000 students) to im-
prove over heuristics. However, we only have training data
from about 5, 000 students in this experiment. Learning a
QP from real students’ data that are noisy is more challeng-
ing, and it may be the case that improving QP-RL further
would require a much larger dataset. Even though QP-RL
seems to require a substantial amount of training data, this
is a one-time training, and the learned policy can be applied
to future students.

5. CONCLUSION
Student assessment is a crucial component of many online
education systems for improving student learning outcomes.
Inferring student knowledge state by quizzing poses a tech-
nical challenge: maximizing accuracy while minimizing the
quizzing cost. In this paper, we show initial evidence that
reinforcement learning (RL) provides a potential solution,
improving over heuristics given sufficient training data.

There are several research directions for future work. Fur-
ther gains in accuracy could be achieved by exploring more
powerful RL techniques and more complex student knowl-
edge modeling techniques. In this work, we model all con-
cepts that share the same super-concept as having the same
relationship; however, there could be prerequisites as well
as weaker and stronger relationships in reality. It would be
important to study whether varying the influence values be-
tween concepts would lead to gains in model performance.

6. REFERENCES
[1] U. Z. Ahmed, M. Christakis, A. Efremov,

N. Fernandez, A. Ghosh, A. Roychoudhury, and
A. Singla. Synthesizing tasks for block-based
programming. In NeurIPS, 2020.

[2] J. Bassen, B. Balaji, M. Schaarschmidt, C. Thille,
J. Painter, D. Zimmaro, A. Games, E. Fast, and J. C.
Mitchell. Reinforcement learning for the adaptive
scheduling of educational activities. In CHI, pages
1–12, 2020.

[3] M. Chi, K. VanLehn, D. Litman, and P. Jordan.
Empirically evaluating the application of
reinforcement learning to the induction of effective
and adaptive pedagogical strategies. User Modeling
and User-Adapted Interaction, 21(1):137–180, 2011.

[4] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction,
4(4):253–278, 1994.

[5] S. Doroudi, V. Aleven, and E. Brunskill. Where’s the
reward? International Journal of Artificial Intelligence
in Education, 29(4):568–620, 2019.

[6] Eedi. Eedi: Online maths lessons with live teacher
support. https://eedi.com.

[7] A. Efremov, A. Ghosh, and A. Singla. Zero-shot
learning of hint policy via reinforcement learning and
program synthesis. In EDM, 2020.

[8] J.-C. Falmagne, M. Koppen, M. Villano, J.-P.
Doignon, and L. Johannesen. Introduction to
knowledge spaces: How to build, test, and search
them. Psychological Review, 97(2):201, 1990.

[9] M. Fang, Y. Li, and T. Cohn. Learning how to active
learn: A deep reinforcement learning approach. CoRR,
abs/1708.02383, 2017.

[10] R. Gilad-Bachrach, A. Navot, and N. Tishby. Query
by committee made real. In NIPS, volume 5, pages
443–450, 2005.

[11] M. R. Gormley and J. Eisner. Structured belief
propagation for nlp. In ACL, pages 5–6, 2015.

[12] S. C. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode
active learning and its application to medical image
classification. In ICML, pages 417–424, 2006.

[13] A. Iglesias, P. Mart́ınez, R. Aler, and F. Fernández.
Reinforcement learning of pedagogical policies in
adaptive and intelligent educational systems.
Knowledge-Based Systems, 22(4):266–270, 2009.

[14] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In ICLR, 2015.

[15] D. D. Lewis and W. A. Gale. A sequential algorithm
for training text classifiers. In SIGIR, pages 3–12,
1994.

[16] Y. Liu. Active learning with support vector machine
applied to gene expression data for cancer
classification. Journal of chemical information and
computer sciences, 44(6):1936–1941, 2004.

[17] T. Mandel, Y.-E. Liu, S. Levine, E. Brunskill, and
Z. Popovic. Offline policy evaluation across
representations with applications to educational
games. In AAMAS, pages 1077–1084, 2014.

[18] R. Moskovitch, Y. Elovici, and L. Rokach. Detection
of unknown computer worms based on behavioral

classification of the host. Computational Statistics &
Data Analysis, 52(9):4544–4566, 2008.

[19] K. Pang, M. Dong, Y. Wu, and T. Hospedales.
Meta-learning transferable active learning policies by
deep reinforcement learning. CoRR, abs/1806.04798,
2018.

[20] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley &
Sons, Inc., 1st edition, 1994.

[21] J. Rollinson and E. Brunskill. From predictive models
to instructional policies. In EDM, 2015.

[22] N. Roy and A. McCallum. Toward optimal active
learning through monte carlo estimation of error
reduction. ICML, pages 441–448, 2001.

[23] H. S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In COLT, pages 287–294, 1992.

[24] A. Singla, S. Tschiatschek, and A. Krause. Actively
learning hemimetrics with applications to eliciting
user preferences. In ICML, pages 412–420, 2016.

[25] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[26] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification.
Journal of machine learning research, 2(Nov):45–66,
2001.

[27] Z. Wang, A. Lamb, E. Saveliev, P. Cameron,
Y. Zaykov, J. M. Hernández-Lobato, R. E. Turner,
R. G. Baraniuk, C. Barton, S. P. Jones, et al.
Diagnostic questions: The neurips 2020 education
challenge. CoRR, abs/2007.12061, 2020.

[28] J. Whitehill and J. Movellan. Approximately optimal
teaching of approximately optimal learners. IEEE
Transactions on Learning Technologies, 11(2):152–164,
2017.

[29] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

[30] M. Woodward and C. Finn. Active one-shot learning.
CoRR, abs/1702.06559, 2017.

[31] Y. Yang, Z. Ma, F. Nie, X. Chang, and A. G.
Hauptmann. Multi-class active learning by uncertainty
sampling with diversity maximization. International
Journal of Computer Vision, 113(2):113–127, 2015.

[32] J. Zhang and K. Cho. Query-efficient imitation
learning for end-to-end autonomous driving. CoRR,
abs/1605.06450, 2016.

https://eedi.com

	Introduction
	Our approach and contributions
	Related work

	Problem Formulation
	Student knowledge state
	Graphical representation of knowledge
	Quizzing policy for knowledge inference
	Evaluation

	Designing quizzing policies
	Heuristic approaches
	RL-based approach

	Experimental Evaluation
	Simulations
	The synthetic dataset
	Results

	NeurIPS 2020 Education Challenge
	The Eedi dataset
	Student performance prediction
	Results

	Conclusion
	References

