

Teaching Multiple Concepts to a Forgetful Learner

Yuxin Chen

Oisin Mac Aodha

Manuel Gomez Rodriguez

Andreas Krause

Pietro Perona

Adish Singla

Motivating Applications

- Spacing effect: practice should spread out over time
- Lag effect: spacing between practices should gradually increase
- No known guarantees on scheduling multiple concepts over fixed horizon
- Key research problem that we tackle in this paper is:

Can we compute near-optimal personalized schedule of repetition?

Teaching Interaction using Flashcards

Interaction at time t = 1, 2, ... T

- 1. Teacher displays a flashcard $x_t \in \{1,2,...,n\}$
- Learner's recall is $y_t \in \{0, 1\}$
- 3. Teacher provides the correct answer

2 jouet Submit

correctly-remembered cards

Background on Teaching Policies

Example setup

• T = 20 and n = 5 concepts given by $\{a, b, c, d, e\}$

Naïve teaching policies

- $a \rightarrow b \rightarrow a \rightarrow e \rightarrow c \rightarrow d \rightarrow a \rightarrow d \rightarrow c \rightarrow a \rightarrow b \rightarrow e \rightarrow a \rightarrow b \rightarrow d \rightarrow e \rightarrow$ • Random:

Key limitation: Schedule agnostic to learning process

Pimsleur method (1967)

- Used in mainstream language learning platforms
- Based on spaced repetition ideas

Key limitation: Non-adaptive schedule ignores learner's responses

Leitner system (1972)

Adaptive spacing intervals

Key limitation: No guarantees on the optimality of the schedule

Learner: Memory Model and Responses

- Half-life regression (HLR) model [Settles, Meeder'16]
- Denote history up to time t as $(x_{1:t}, y_{1:t})$
 - Last time step when concept x was taught is $l_t^x \in \{1, ..., t\}$
 - $\Delta_{t,\tau}^{x} = (\tau l_t^{x})$ is time past for $\tau \in \{t + 1, ..., T\}$
- Learner's mastery for concept x at time t is h_t^x
- Recall probability based on exponential forgetting: $g^{x}(\tau,(x_{1:t},y_{1:t})) = 2^{-1}$
- Changes in half-life h^x parameterized by (a^x, b^x)

Teacher: Scheduling as Optimization

Teacher's objective function

• Given a sequence of concepts and observations $x_{1:T}$, $y_{1:T}$, we define

Optimization problem

- Teaching policy is given by π : $(x_{1:t-1}, y_{1:t-1}) \rightarrow \{1, 2, ..., n\}$
- Average utility of a policy π is $F(\pi) = \mathbb{E}_{(x,y)} \left[f(x_{1:T}^{\pi}, y_{1:T}^{\pi}) \right]$
- Optimal policy is given by $\pi^* = \operatorname{argmax}_{\pi} F(\pi)$

Adaptive greedy algorithm

- for t = 1, 2, ... T:
 - Select $x_t \leftarrow \operatorname{argmax}_x \mathbb{E}_{(y)}[f(x_{1:t-1} \oplus x, y_{1:t-1} \oplus y)] f(x_{1:t-1}, y_{1:t-1})$
 - Observe learner's recall $y_t \in \{0, 1\}$
 - Update $x_{1:t} \leftarrow x_{1:t-1} \oplus x_t$; $y_{1:t} \leftarrow y_{1:t-1} \oplus y_t$

Characteristics of the problem

- Non-submodular
 - Gain of a concept x can increase given longer history
 - Captured by submodularity ratio γ over sequences

- Post-fix non-monotone
 - $f(\text{orange} \oplus \text{blue}) < f(\text{blue})$
 - Captured by curvature ω

Theoretical Guarantees

Guarantees for general case (any memory model)

• Utility of $\pi^{\rm gr}$ (greedy policy) compared to $\pi^{\rm opt}$ is given by

$$F(\pi^{\text{gr}}) \geq F(\pi^{\text{opt}}) \sum_{t=1}^{T} \left(\frac{\gamma_{T-t}}{T} \prod_{\tau=0}^{t-1} \left(1 - \frac{\omega_{\tau} \cdot \gamma_{\tau}}{T} \right) \right) \geq F(\pi^{\text{opt}}) \frac{1}{\omega_{\text{max}}} (1 - e^{-\omega_{\text{max}} \cdot \gamma_{\text{min}}})$$

Theorem 1

Corollary 2

Guarantees for the HLR model

• Theorem 5. Consider the task of teaching n concepts where each concept is following an independent HLR model with the same parameters $(a^x = z, b^x = z) \forall x \in \{1, 2, ..., n\}$. A sufficient condition for the algorithm to achieve $(1 - \epsilon)$ high utility is

$$z \ge \max \{ \log T, \log(3n), \log \left(\frac{2n^2}{\epsilon T}\right) \}.$$

Illustration

• T=15 and n=3 concepts using HLR model with different parameters

Results on Human Participants

Online learning platforms

- German vocabulary for language learning: https://www.teaching-german.cc/
- Recognizing animal species from images: https://www.teaching-biodiversity.cc/

Experimental setup

- Performance measured by gain in knowledge: postquiz score prequiz score
- T = 40, n = 15; participants from a crowdsourcing platform (80 and 320)
- Dataset of 100 English-German word pairs
- Dataset of 50 animal images of common and rare species

Algorithms

- GR: Our algorithm; RD: Random; RR: Round-robin
- LR: Least-recall (generalization of Pimsleur method and Leitner system)

		GR	LR	RR	RD
German	Avg. gain	0.572	0.487	0.462	0.467
	p-value	-	0.0652	0.0197	0.0151
		GR	LR	RR	RD
Biodiversity (all species)	Avg. gain	0.475	0.411	0.390	0.251
	p-value	-	0.0017	0.0001	0.0001
		GR	LR	RR	RD
Biodiversity (rare species)	Avg. gain	0.766	0.668	0.601	0.396
	p-value	-	0.0001	0.0001	0.0001