Assisted Inverse Reinforcement Learning

Parameswaran Kamalaruban Rati Devidze Teresa Yeo
LIONS, EPFL MPI-SWS LIONS, EPFL
Trisha Mittal Volkan Cevher Adish Singla
MPI-SWS LIONS, EPFL MPI-SWS
Abstract

We study the problem of inverse reinforcement learning (IRL) with the added
twist that the learner is assisted by a helpful teacher. More formally, we tackle
the following question: How could a teacher provide an informative sequence of
demonstrations to an IRL agent to speed up the learning process? We prove rigor-
ous convergence guarantees of a new iterative teaching algorithm that adaptively
chooses demonstrations based on the learner’s current performance. Extensive ex-
periments with a car driving simulator environment show that the learning progress
can be speeded up drastically as compared to an uninformative teacher.

1 Introduction

Imitation Learning (IL), also known as Learning from Demonstrations, enables a learner to acquire
new skills by observing a teacher’s behavior. It plays an important role in many real-life learning
settings, including human-to-human interaction [1} 2], and human-to-robot interaction [3} 14} 5, 6].

IL has been extensively studied in the context of designing efficient learning algorithms for a given set
of demonstrations. The two popular approaches for IL include (i) behavioral cloning, which directly
replicates the desired behavior [[7], and (ii) inverse reinforcement learning (IRL), which infers the
reward function explaining the desired behavior [8]. Despite recent advances in designing efficient
IRL algorithms, there is little work on how to generate an optimal sequence of demonstrations.

Motivated by applications of intelligent tutoring systems to teach sequential decision-making tasks,
such as surgical training or car driving, we study IL from the viewpoint of a teacher in order to
best assist an IRL agent. Our work is inspired by real-life pedagogical settings, where it is evident
that a carefully chosen demonstrations and tasks can considerably accelerate the learning progress
[9]. For instance, consider a real-life scenario where a driving instructor wants to teach a student
certain driving skills. The instructor can easily identify the mistakes/weaknesses of the student (e.g.,
unable to do rear parking), and then carefully choose tasks that student should perform, along with
demonstrations to rectify any mistakes. However, the notion of helpful teaching is still not well
understood computationally.

This work answers the following algorithmic challenge: How could a teacher provide an informative
sequence of demonstrations/tasks to an IRL agent to speed up the learning process? Mathematically,
we build an iterative machine teaching (IMT) framework for sequential decision-making tasks in
Markov Decision Processes (MDP). An IMT framework assumes a “gradient” learner, and then
teacher assists this learner by choosing the next training instance based on the current “parameter” of
the learner [[10].

The upshot of our approach is that we can transfer improvements in learning convergence from the
IMT framework to the IRL setting. We note that, in a supervised learning setting (i.e., regression
and classification tasks), [10] obtains an exponential improvement in convergence rate as compared
to stochastic teacher who picks examples at random (more concretely, O (1og %) in comparison to

@) (}2) to get € close to the target).

Learning by Instruction Workshop, NIPS 2018. Do not distribute.

1.1 Our Approach

In this paper, we consider a learning agent (“learner””) who is implementing an online IRL algorithm.
In particular, we study an online variant of the popular IRL algorithm, namely Maximum Causal
Entropy (MCE) IRL algorithm [[11} 12} [13]).

Our key insight in designing our teaching algorithm is to reduce the problem of teaching a policy to
that of obtaining an optimal hyperparameter in the learner’s solution space. As in the IMT framework,
we consider the teacher who knows the learning dynamics including learner’s current parameters
at any given time. We then prove rigorous convergence guarantees of our teaching algorithm and
show that it can significantly reduce the number of demonstrations required to achieve a desired
performance of the learner.

We perform extensive experiments in a synthetic learning environment inspired by a car driving
simulator. While our model is conceptually simple, it is powerful enough to showcase significant
improvements in speeding up the learning progress. In particular, our results show that the sequence
of demonstrations picked by our algorithm exhibits a natural, interpretable curriculum: The teaching
starts from “easier” tasks (e.g., driving on a free highway and avoiding HOV lane) and then proceeds
to more “challenging” tasks (e.g., maintaining safe distance to pedestrians).

2 Problem Setup

2.1 Environment

Consider an MDP represented by M := (S, A, T,~, Py, $, R). The sets of possible states and
actions are denoted by S and A respectively. T : S x S x A — [0, 1] captures the state transition
dynamics, i.e., T (s’ | s,a) denotes the probability of landing in state s’ by taking action a from
state s. Here + is the discounting factor, and Py : & — [0, 1] is an initial distribution over states
S. We consider the reward functions R : S — R which are linear w.r.t. feature vector over states
¢:S =Ry eg, R(s) = (w,o(s)) for some ws.t. |w], <1.

We denote a policy 7 : S x A — [0, 1] as a mapping from a state to a probability distribution over
actions. For any policy 7, the feature expectation vector and value of 7 in the MDP M (with respect
to the initial state s € S) are defined as follows:

B = 6(s) Y e | 5) DT | s @)t € R

Vs .

R(s)+7 > wlals)) T(s | 5,a)V™" R

respectively. Then by taking expectation over s € S with respect to the initial state distribution
Py, we have u™ := Eyop, [#™®], and V™ := E,op, [V™°]. Similarly, for any trajectory § =
{(sryar)}, o1 representing a sequence of state-action pairs when executing a policy in the MDP
M, we define the following empirical counterparts of the above defined identities:

ut =) 9Td(s:) € R

7=0

VE =) 9"R(s;) €R

T7=0

|-

Then for a collection of trajectories = = {&},_,, . we have = := >, pft, and VE =

Ly, v

(1]

2.2 Interaction between Learner and Teacher

We consider a sequential IRL learner (cf., next section for details) who knows the MDP M, but not
the reward function R, i.e., has only access to M\ R. In addition, we have a helpful teacher with full
access to the MDP M who would assist the learner by providing informative demonstrations. For the
presentation of the main results, we assume that the teacher knows the learning dynamics including

Algorithm 1: Learning via Demonstrations

Initialization: initial policy m;
fort=1,2,...,T do
teacher provides a demonstration &; to the learner
learner updates the policy ;41 using 7, and &;
end

Output: compute policy 77 from 7y, .., 741

learner’s current parameters at any given time. The learner receives a sequence of demonstrations
—_ . L. .
E={&},_,, from the teacher and outputs a policy % such that V™ is high. The learner-teacher

interaction is described formally in Algorithm|[I]

2.3 Teaching Objective
Let 7% be the target policy (e.g., an optimal policy in the MDP M) that we want to teach to the

learner. The performance of the learner’s policy 7% (w.r.t. 7) in M is evaluated via the following
measures (for some fixed € > 0):

1. ‘V”L _yr”

< ¢, ensuring high reward.

'l nf

2. ‘ wr— ‘
2
R(s) = (w, ¢ (s)) (with some unknown parameter w such that ||w||, < 1) [14].

< ¢, ensuring robustness for any linear reward functions of the form

If the above conditions are satisfied (which is the objective of the learning agent), we say that the
learner’s policy e-approximate the target policy. In this paper, we study this problem from the
viewpoint of a teacher in order to provide a near-optimal sequence of demonstrations {:},_; ,
to the learner, to achieve the desired objective. The teacher’s performance is then measured by the
number of demonstrations required to achieve the learner’s objective.

3 Learner’s Model and Algorithms
In this work, we consider Maximum Causal Entropy based Inverse Reinforcement Learning (MCE-

IRL, [[L1}[12]]) algorithm for the learner. The MCE-IRL approach can be interpreted (in dual form) as
maximizing the causal likelihood of the demonstration data.

3.1 Background on (Batch) MCE-IRL Algorithm

yoes

underlying reward function by solving the following problem:

maxi)\mize c(NE) = zt:zT:lOgP/\ (atr | s¢.7) (D
where
Py(a|s) = ZZ': log Zox = log) Zujuxi 108 Zajen = (M0(3) +7 2 T(s' | 5.0)log Zu .
" S @)

Consider that the learner’s current parameter is \;, and 7/ is the optimal policy for M\ R with
R(s) = (\;, ¢(s)) computed via Soft-Value-Iteration procedure, cf. [12| Algorithm. 9.1]. Then, the

gradient of the above concave optimization problem is g; = U= — u“xj € dc(A;; 2) [12, Eq. 10.1].
The gradient descent update rule is given by:

Nip1 < Nj—mig5 = Nj—m; (W — p=), 3)

where 7; = 7% and 7; denotes the current learning rate.

Algorithm 2: Sequential MCE-IRL [12} [13]]

Initialization: A\, m;

fort=1,2,...,T do
teacher provides a demonstration &; with starting state s; o to the learner
)\t+1 — HQ [)\t _ 77t (Mﬂt,st,o _ /J/Et)]
mi41 < Soft-Value-Iteration (M\ R, A1 1)

end

Output: compute policy 7% from 71, ..., 741

3.2 Sequential MCE-IRL Algorithm

As discussed in the problem setup, our work considers a sequential IRL learner. In fact, the full
gradient update rule given in (3 can be naturally extended to an online variant [12, [13]], where, at
every time step ¢, the learner receives a demonstration &; with starting state s; o. We consider the
following online projected gradient descent update:

A1+ Ig [)‘t - T]tgt] s 4
where
ge = e —pfh Qo= Al <y

for large enough r s.t. A* € €. Then the resulting sequential MCE-IRL algorithm is given in
Algorithm[2}

In the following sections, we present different teaching algorithms for the sequential MCE-IRL
learner (Algorithm 2)), and provide the convergence guarantees for them. The teachers differ in the
way they choose the demonstration &, (with starting state s; o) at every time step ¢.

4 Agnostic Teaching

In this section, we present a natural agnostic teaching algorithm for the sequential MCE-IRL learner
discussed above. We begin by considering the following stochastic optimization formulation of the
batch MCE-IRL (T):

min ¢ (\) := E — log Py (a, | s+) |, (®)]
o= B [P s e
where Py, is given by (2).

Next, we study the performance (w.r.t. the loss function ¢ (\)) of the sequential MCE-IRL learner
when learning from an agnostic/uninformative teacher. This agnostic teacher provides a demonstration
at random by executing the policy 7 in the MDP M, i.e., & ~ (7, M). For this setting, we have,

a Tt,St, t| — Tt il
E¢, [§e] = Es, .6, [0 —] = p™ —p™ € Oe (M)
Then for this agnostic teacher (given by Algorithm 3)), we have the following convergence guarantee:
Theorem 1. For the agnostic teaching strategy given in Algorithm|3| and T = O (6%), we have

E {c (% ST Am) —min ¢ (A)} <e

Without any further information about the learner, a teacher can do no better than providing random
demonstrations. Next, we present an informative teaching strategy (which exploits the knowledge
of the target policy and the learning dynamics), and show that it substantially improves upon the
convergence rate given above.

5 Assistive Teaching

In this section, we design a teaching strategy to provide a more informative demonstration &; by
leveraging the knowledge of the target policy and learner’s dynamics. The main idea is to pick the

Algorithm 3: Sequential MCE-IRL with Agnostic Teacher
Initialization: A\, m;
fort=1,2,...,T do
teacher provides a demonstration &; u (7%, M) to the learner
A1 4 o [Ny =y (50 — pft)]
i1 < Soft-Value-Tteration (M\ R, A1 1)
end
1 T
)\avg — T Zt:l)\t—i-l
mhave ¢ Soft-Value-Iteration (M\ R, Aayg)
Output: policy 7% « 7have

Algorithm 4: Sequential MCE-IRL with Assistive Teacher
Initialization: \q, 7
fort=1,2,...,Tdo
teacher provides a demonstration &; satisfying (7) to the learner
Ati1 = Hg [N — 1 (70500 — i)
1 < Soft-Value-Tteration (M\R, Ay 1)
end
Result: policy 7 < w74

demonstration which minimizes the distance between the IRL agent’s current parameter (\;) and the
target hyperparameter (A*), i.e., minimize || A¢11 — A*|| = ||\t — 7.+ — A*||. Consider the following
unconstrained optimization problem for selecting an informative demonstration at time ¢:

Hsugn ,r]tz Huﬂhs _ M§H2 _ QT]t <)\t _ A*,/J/TH”S _ M£>’ (6)

where s is the starting state of £. The optimal solution for the above problem is a synthetic trajectory
syn . . syn . . .
¢ (with starting state s,y) whose feature expectation vector satisfies:

syn

ps = et — B (A — \Y),

for some 3; € {O L] and H;ﬁ:yn < hax V.
2

r

Ideally, we would like to provide &> as the next demonstration. However, in real-world applications,

the teacher would naturally have some constraints (e.g., posed by the physical environment or
teacher’s policy) on what demonstrations can be provided. The assistive teacher looks for a feasible
demonstration &, whose feature expectation vector ;& is closest to /ﬁiy". For instance, the teacher
could either generate such a feasible demonstration &; on the fly (e.g., in a virtual simulation-based
teaching environment) or select it from a pre-defined pool of feasible demonstrations.

We say that a teacher is A, ac-powerful, if for every ¢, the teacher can generate a demonstration &,
that satisfies: v

pet = pte 44, (7
for some 0y s.t. ||6¢]|; < Amax. The resulting assistive teaching strategy is given in Algorithm

The following theorem shows that this teaching strategy can significantly speedup the learning
progress compared to the agnostic teacher (cf., Theorem).

12 p2

. . L € B
Theorem 2. Given ¢’ > 0, let the teacher be A,y -powerful with A,y := T[] (where

B = ming n,5s, and Nimax = maxy ne). Then for the assistive teaching strategy given in Algorithm4]
and T = O (log 5), we have || Ar — *|| < €.

Note that the above theorem only guarantees the convergence to the target hyperparameter (A*). In
the extended version of this paper, we show that by exploiting the smoothness of the MDP M, the
convergence to the target hyperparameter guarantees the convergence to the target feature expectation
vector.

a b a b a a b a b
9 1 1 =L 1 |) I:Iknad
L §] 1 IE -Gn,,ss
71 1 7 L) LY =
B B B B +To Smnc
s 1 1 L | 1 Iz IIlredesnrinn
4 hY 1 st = | i Car
3 1 T = (1 1 __o IIIHO\'
2 4 ‘= * i_o
1t = |8 7 L K3
ot ’ 1 ’ 16

0 T TS T6 7

Figure 1: Car simulator environment with 8 distinct lanes (tasks). In any given lane, an agent starts
from the bottom-left corner and the goal is to reach the top of the lane. Blue arrows represent the
path taken by the teacher’s optimal policy.

¢(s) | road | stone | grass | car | ped | HOV | carl | pedl | nocarl | nopedl

w 1 -1 -0.5 -5 -10 -1 -2 -5 0 0

Table 1: Weight vector (without normalization) specifying the linear reward function R (s) =
(w, ¢ (s)). Teacher’s optimal policy w.r.t. this reward function is illustrated via the blue arrows in
Figure |I| when driving in this environment.

6 Experimental Evaluation

In this section, we demonstrate the performance of our algorithm in a learning environment inspired
by a car driving simulator application [[15].

6.1 Environment Setup

Figure [I] shows the car driving simulator environment that we use in our experiments. It consists
of 8 different lanes (henceforth referred as tasks), denoted as TO, T1, T2, T3, T4, T5, T6,and T7.
The total number of states in the MDP is 160 where each cell represents a state, and each task is
associated with 20 states. There are 8 initial states corresponding to the bottom left cell of each
task given by {T 00,4, T10,a; T20,a T30,as T40,a; T50,a; T60,a; T 70,q }- The agent can be imagined
as driving a car and her goal is to navigate in this environment, starting from an initial state to the top
end of the lane. The agent can take three different actions: {left, straight, right}. Action
left steers the agent to the left of the current lane (or stay in the same lane if agent is already in
the leftmost lane) and action right steers to the right of the current lane (or stay in the same lane
if agent is already in the rightmost lane). Irrespective of the action taken by the agent, the agent
always move forward. For instance, consider that the agent’s current state is the T24 , grid cell; then,
the agent’s next states corresponding these three actions would be T25 ,, T25 4,and T25 ;. W.Lo.g.,
we consider that only the agent moves in this environment and rest everything (i.e., other cars and
pedestrians) is static.

We use d = 10 features to define the state space ¢ (s). These features are of two types:

1. features indicating the type of the current grid cell as road, stone, grass, car, ped,
and HOV;

2. features providing some look-ahead information about the upcoming grid cells such as if
there is a car or pedestrian in the immediate front cell (denoted as carl and pedl) or
otherwise (denoted as nocarl and nopedl)

The weight vector (without normalization) specifying the linear reward function R (s) = (w, ¢ (s)) is
shown in Table[I] Teacher’s policy is then computed as the optimal policy w.r.t. this reward function
and is illustrated via blue arrows in Figure[I|representing the path taken by the teacher when driving
in this environment.

Each of these tasks is associated with different driving skills. For instance, task TO corresponds to the
most basic setup representing a traffic-free highway—it has a very small probability of the presence

—-+- Agnostic =~ —f— Assistive --= AgnT4 --- Agn-T7 -=-=- Agngrass —-- Agn-HOV

3 — Ast-T4 Ast-T7 . —— Ast-grass Ast-HOV
5 2 05 £ 012
£ 0.651 z E
o prd £ 0.10
2 2 04 %
g | . %
g 055 Rl g g 0.08
= aC o & 5
2 T ——— o 03 =
g 0.45 8 3 0.06
< =
£ 035 E 02 £ 0.04
g £ 5 0.02
Q = o= V2
S 025 v . - . & o1 5 . - . - -
= 0 50 100 150 200 0 50 100 150 200 A~ 0 50 100 150 200
Time step t Time step t Time step t

(a) Convergence of the learner’s hy- (b) Convergence of the feature ex- (c) Convergence of the feature ex-
perparameter)\; to the target * pectation p for different tasks pectation p for different features

Figure 2: Convergence plots of our assistive teaching algorithm in comparison to the agnostic teacher.

7 II/\ I\JY IHII WH III\I w M 7 7
nTéllulllllH’lJ T I T
§T5{| \IIW\ (RN ARAN \ B TS | TS
2o [T \\I ’\ | IIIII e L il 2 T
gT3I\|’ | I‘IH I'l ’ % T3 % T3
g 129 |l \\IHIIIIIINII’I \I‘H g T2 g T
TI FEIT PO Wi Tl TI

01 01 0 |

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Time step t Time step t Time step t
(a) Learner’s initial skills: TO (b) Learner’s initial skills: TO-T3 (c) Learner’s inital skills: TO-T5

Figure 3: Teaching curriculum (i.e., the task associated with the picked state s; o in Algorithm EI) for
three different settings depending on the learner’s initial skills trained on (a) T0, (b) TO-T3, and (c)
TO-T5.

of another car. However, the task T1 represents a crowded highway with 0.25 probability of grid cell
being a car, and the task T7 contains an HOV lane that the agent should avoid. Task T2 has stones on
the right lane, whereas task T3 has a mix of both cars and stones. Similarly, tasks T4 has grass on
the right lane, and T5 has a mix of both grass and cars. Task T 6 also has pedestrians which the agent
should maintain distance to and avoid hitting.

6.2 Experimental Results

Next, we report the experimental results where we compare the performance of different teaching
algorithms and analyze the teaching curriculum when varying the learner’s initial skills. We consider
the learning agent implementing a sequential MCE-IRL algorithm (Algorithm [2) and results are
reported by averaging over 30 runs.

6.2.1 Convergence of algorithms

Here, we consider the following setup: The learner is initially trained based on demonstrations
sampled only from the tasks TO, T1, T2, and T3. Intuitively, the learner’s initial policy 7!
(corresponding to hyperparameter \;) possesses skills to avoid collisions with cars and to avoid
hitting stones while driving. We expect to teach three major skills to the learner, i.e., avoiding grass
while driving (T4, T5, and T6), maintaining distance to pedestrians (T 6), and not to drive on an
HOV lane (T7).

Figure [2af shows the convergence of the learner’s current hyperparameter \; to the target hyperpa-
rameter *, i.e., |[A\; — A*||, for both the assistive teacher and the agnostic teacher. In Figure
we consider the convergence of the feature expectation vector of the learner’s current policy p™* to

. A . .
the target feature expectation vector 4™ . More specifically, we compute this convergence of the

*

feature expectations separately for the tasks T4 and T7, which is given by H pures — ;ﬂA 1

where
2

5 =T4g,qand s = T7g q respectively. Similarly, in Figure we compare the convergence in feature
expectation vectors, but only considering the components associated with the features grass and

HOV. These convergence plots illustrate that the assistive teaching algorithm significantly outperforms
the agnostic teaching in terms of convergence to the target hyperparameter, as well as in acquiring
new skills and improving performance across tasks. In Figure 2b] we see that the gap between the
assistive and agnostic teacher is even more drastic for the task T7 compared to the task T4—in
general, the assistance becomes even more important when learning more rarely occurring skills.

6.2.2 Teaching curriculum

In Figure 3] we compare the teaching curriculum of the asisstive teacher for different settings
depending on the learner’s initial skills trained on (a) task TO0, (b) tasks TO—T 3, and (c) tasks TO-T5.
The curriculum here refers to the task associated with the state s; o picked by the teacher at time ¢
to provide the demonstration (cf., Algorithm). In these plots, we can see specific structures and
temporal patterns emerging in the curriculum. First, we can see that the teaching curriculum focuses
on tasks that help the learner acquire new skills. For instance, in Figure [3b] the teacher primarily
picks tasks that provide new skills corresponding to the features grass, HOV, and ped. Second,
an interesting temporal pattern in the curriculum can be seen in Figure [3c| where the learner needs
to acquire two skills about maintaining distance to pedestrians and not driving in the HOV lane.
Here, the presence of pedestrians is a rarer event compared to the HOV lane (10% of grid cells in
T6 are ped, compared to 50% HOV grid cells in T7). Consequently, the curriculum begins with
the “easier” task T7 by first exclusively teaching the HOV feature, and then over time, additionally
includes demonstrations from the more “challenging" task T6.

6.3 Related Work
6.3.1 Inverse Reinforcement Learning

In the inverse reinforcement learning (IRL), an agent observes the behavior (batch of demonstrations)
of an expert in an MDP environment with an unknown reward function and attempts to infer the
weight parameters of the reward function. We refer the reader to a recent survey by [16] providing
an algorithmic perspective and recent results on IRL algorithms. While a lot of work in IRL is
model-based (cf., [15} [14} [17, [11]], recently, new algorithms have been proposed for model-free
setting (cf., [18}19]). [20] have studied the value alignment problem in a game-theoretic setup, and
provided an approximate scheme to generate instructive demonstrations for an IRL agent. In our
work, we devise a systematic procedure (with convergence guarantees) to choose an optimal sequence
of demonstrations, by taking into account the learning dynamics.

A somewhat different but related problem setting is that of reward shaping where the goal is to
modify/design the reward function to guide the learning agent 21, 22]]. There has also been work on
designing active/interactive IRL algorithms that focus on reducing the number of demonstrations that
need to be requested from a teacher (cf., [23l]). However, the key difference in our approach is that
we take the viewpoint of a teacher in how to best assist the learning agent by providing an optimal
sequence of demonstrations.

6.3.2 Algorithmic Teaching

Another line of research relevant to our work is that of algorithmic teaching. Here, one studies the
interaction between a teacher and a learner where the teacher’s objective is to find an optimal training
sequence to steer the learner towards a desired goal [24}[10]. Algorithmic teaching provides a rigorous
formalism for a number of real-world applications such as personalized education and intelligent
tutoring systems [25} 26], social robotics [27, 28], and human-in-the-loop systems [29, 30].

[27] have studied the problem of teaching an IRL agent in the batch setting, i.e., the teacher has
to provide a near-optimal set of demonstrations at once. They considered the IRL algorithm from
[L5], which could only result in inferring an equivalent class of reward weight parameters for which
the observed behavior is optimal. In a recent work, contemporary to ours, [31] have extended the
previous work of [27] by showing that the teaching problem can be formulated as a set cover problem.
However, their teaching strategy does not take into account how the learner progresses (i.e., it is
non-interactive). In contrast, we study an interactive teaching setting to teach a sequential MCE-IRL
algorithm [[11} [13]]. In another recent work, contemporary to ours, [32]] have studied the problem of
teaching an IRL agent, however they consider a different setting where there is a model mismatch
between the teacher and the learner.

References

[1] Daphna Buchsbaum, Alison Gopnik, Thomas L Griffiths, and Patrick Shafto. Children’s
imitation of causal action sequences is influenced by statistical and pedagogical evidence.
Cognition, 120(3):331-340, 2011.

[2] Patrick Shafto, Noah D Goodman, and Thomas L Griffiths. A rational account of pedagogical
reasoning: Teaching by, and learning from, examples. Cognitive psychology, 71:55-89, 2014.

[3] Stefan Schaal. Learning from demonstration. In NIPS, pages 1040-1046, 1997.

[4] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and Stefan Schaal. Robot programming by
demonstration. In Springer handbook of robotics, pages 1371-1394. Springer, 2008.

[5] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469—-483, 2009.

[6] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8(3):1-121, 2014.

[7] Michael Bain and Claude Sommut. A framework for hehavioural claning. Machine Intelligence
15, 15:103, 1999.

[8] Stuart Russell. Learning agents for uncertain environments. In Proceedings of the eleventh
annual conference on Computational learning theory, pages 101-103. ACM, 1998.

[9] Mark K Ho, Michael Littman, James MacGlashan, Fiery Cushman, and Joseph L Austerweil.
Showing versus doing: Teaching by demonstration. In NIPS, pages 3027-3035, 2016.

[10] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu, Linda B. Smith, James M.
Rehg, and Le Song. Iterative machine teaching. In ICML, pages 2149-2158, 2017.

[11] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy
inverse reinforcement learning. In AAAI, volume 8, pages 14331438, 2008.

[12] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. Carnegie Mellon University, 2010.

[13] Nicholas Rhinehart and Kris M Kitani. First-person activity forecasting with online inverse
reinforcement learning. In Proceedings of the IEEE International Conference on Computer
Vision, pages 3696-3705, 2017.

[14] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning.
In ICML, page 1. ACM, 2004.

[15] Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Ieml,
pages 663-670, 2000.

[16] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J] Andrew Bagnell, Pieter Abbeel, Jan Peters,
et al. An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,
7(1-2):1-179, 2018.

[17] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
ICML, pages 729-736. ACM, 2006.

[18] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement
learning. In Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, pages 182—189, 2011.

[19] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, pages
4565-4573, 2016.

[20] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. In NIPS, pages 3909-3917, 2016.

[21] Jonathan Sorg, Satinder P. Singh, and Richard L. Lewis. Reward design via online gradient
ascent. In NIPS, pages 2190-2198, 2010.

[22] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In ICML, volume 99, pages 278-287,
1999.

[23] Kareem Amin, Nan Jiang, and Satinder P. Singh. Repeated inverse reinforcement learning. In
NIPS, pages 1813-1822, 2017.

[24] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. An overview of machine
teaching. CoRR, abs/1801.05927, 2018.

[25] Anna N Rafferty, Emma Brunskill, Thomas L Griffiths, and Patrick Shafto. Faster teaching via
pomdp planning. Cognitive science, 40(6):1290-1332, 2016.

[26] Kaustubh R Patil, Xiaojin Zhu, Lukasz Kopeé, and Bradley C Love. Optimal teaching for
limited-capacity human learners. In NIPS, pages 2465-2473, 2014.

[27] Maya Cakmak, Manuel Lopes, et al. Algorithmic and human teaching of sequential decision
tasks. In AAAI 2012.

[28] Maya Cakmak and Andrea L Thomaz. Eliciting good teaching from humans for machine
learners. Artificial Intelligence, 217:198-215, 2014.

[29] Adish Singla, Ilija Bogunovic, Gdbor Bart6k, Amin Karbasi, and Andreas Krause. Near-
optimally teaching the crowd to classify. In ICML, pages 154-162, 2014.

[30] Adish Singla, Ilija Bogunovic, G Bartdk, A Karbasi, and A Krause. On actively teaching the
crowd to classify. In NIPS Workshop on Data Driven Education, 2013.

[31] Daniel S. Brown and Scott Niekum. Machine teaching for inverse reinforcement learning:
Algorithms and applications. CoRR, abs/1805.07687, 2018.

[32] Luis Haug, Sebastian Tschiatschek, and Adish Singla. Teaching inverse reinforcement learners
via features and demonstrations. In NIPS, 2018.

10

	Introduction
	Our Approach

	Problem Setup
	Environment
	Interaction between Learner and Teacher
	Teaching Objective

	Learner's Model and Algorithms
	Background on (Batch) MCE-IRL Algorithm
	Sequential MCE-IRL Algorithm

	Agnostic Teaching
	Assistive Teaching
	Experimental Evaluation
	Environment Setup
	Experimental Results
	Convergence of algorithms
	Teaching curriculum

	Related Work
	Inverse Reinforcement Learning
	Algorithmic Teaching

