
Policy Teaching in Reinforcement Learning
via Environment Poisoning Attacks∗

Amin Rakhsha arakhsha@mpi-sws.org
Max Planck Institute for Software Systems (MPI-SWS)
Saarbrucken, 66123, Germany

Goran Radanovic gradanovic@mpi-sws.org
Max Planck Institute for Software Systems (MPI-SWS)
Saarbrucken, 66123, Germany

Rati Devidze rdevidze@mpi-sws.org
Max Planck Institute for Software Systems (MPI-SWS)
Saarbrucken, 66123, Germany

Xiaojin Zhu jerryzhu@cs.wisc.edu
University of Wisconsin-Madison
Madison, WI 53706, USA

Adish Singla adishs@mpi-sws.org
Max Planck Institute for Software Systems (MPI-SWS)
Saarbrucken, 66123, Germany

Abstract

We study a security threat to reinforcement learning where an attacker poisons the learning
environment to force the agent into executing a target policy chosen by the attacker. As a
victim, we consider RL agents whose objective is to find a policy that maximizes reward
in infinite-horizon problem settings. The attacker can manipulate the rewards and the
transition dynamics in the learning environment at training-time, and is interested in doing
so in a stealthy manner. We propose an optimization framework for finding an optimal
stealthy attack for different measures of attack cost. We provide lower/upper bounds on
the attack cost, and instantiate our attacks in two settings: (i) an offline setting where
the agent is doing planning in the poisoned environment, and (ii) an online setting where
the agent is learning a policy with poisoned feedback. Our results show that the attacker
can easily succeed in teaching any target policy to the victim under mild conditions and
highlight a significant security threat to reinforcement learning agents in practice.

Keywords: training-time adversarial attacks, reinforcement learning, policy teaching,
environment poisoning, security threat

∗ This manuscript is an extended version of the paper (Rakhsha et al., 2020) that appeared in ICML’20.

©2020 Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/

Rakhsha, Radanovic, Devidze, Zhu, and Singla

1. Introduction

Understanding adversarial attacks on learning algorithms is critical to finding security threats
against the deployed machine learning systems and in designing novel algorithms robust
to those threats. We focus on training-time adversarial attacks on learning algorithms,
also known as data poisoning attacks (Huang et al., 2011; Biggio and Roli, 2018; Zhu,
2018). Different from test-time attacks where the adversary perturbs test data to change
the algorithm’s decisions, poisoning attacks manipulate the training data to change the
algorithm’s decision-making policy itself.

Most of the existing work on data poisoning attacks has focused on supervised learning
algorithms (Biggio et al., 2012; Mei and Zhu, 2015; Xiao et al., 2015; Alfeld et al., 2016; Li et al.,
2016; Koh et al., 2018). In contemporary works, researchers have explored data poisoning
attacks against stochastic multi-armed bandits (Jun et al., 2018; Liu and Shroff, 2019) and
contextual bandits (Ma et al., 2018), which belong to family of online learning algorithms
with limited feedback—such algorithms are widely used in real-world applications such as
news article recommendation (Li et al., 2010) and web advertisements ranking (Chapelle
et al., 2014). The feedback loop in online learning makes these applications easily susceptible
to data poisoning, e.g., attacks in the form of click baits (Miller et al., 2011).

In this paper, we focus on data poisoning attacks against reinforcement learning (RL) algo-
rithms, an online learning paradigm for sequential decision-making under uncertainty (Sutton
and Barto, 2018).1 Given that RL algorithms are increasingly used in critical applications,
including cyber-physical systems (Li and Qiu, 2019) and personal assistive devices (Rybski
et al., 2007), it is of utmost importance to investigate the security threat to RL algorithms
against different forms of poisoning attacks.

1.1 Overview of our Results and Contributions

In the following, we discuss a few of the types/dimensions of poisoning attacks in RL in
order to highlight the novelty of our work in comparison to existing work.2

Type of adversarial manipulation. Existing works on poisoning attacks against RL
have studied the manipulation of rewards only (Zhang and Parkes, 2008; Zhang et al., 2009;
Ma et al., 2019; Huang and Zhu, 2019; Zhang et al., 2020). However, for certain applications,
it is more natural to manipulate the transition dynamics instead of the rewards, such as
(i) the inventory management problem setting where state transitions are controlled by
demand and supply of products in a market and (ii) conversational agents where the state

1Poisoning attacks is also mathematically equivalent to the formulation of machine teaching with teacher
being the adversary (Zhu et al., 2018). However, the problem of designing optimized environments for
teaching a target policy to an RL agent is not well-understood in machine teaching.

2This paper extends the earlier version of the conference paper (Rakhsha et al., 2020) in the following
ways. (i) The earlier version studied attacks by poisoning either rewards only or transitions only. In this
paper, we introduce a general optimization framework for jointly poisoning the rewards and transitions. We
provide new theoretical analysis for the joint attack and empirically show that it leads to more cost-effective
attack strategies. (ii) The earlier version studied attacks only against RL agents who maximize average
reward in undiscounted infinite-horizon settings. In this paper, we generalize these results by additionally
considering discounted infinite-horizon settings. This generalization in turn makes our attack strategies
applicable to a broader family of RL agents (e.g., an agent using the Q-learning algorithm). (iii) We provide
a detailed discussion on the efficiency of solving the attack optimization problems.

2

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

is represented by the history of conversations. A key novelty of our work is that we study
environment poisoning, i.e., jointly manipulating rewards and transition dynamics. We
propose a general optimization framework for environment poisoning; our theoretical analysis
provides technical conditions which ensures attacker’s success and gives lower/upper bounds
on the attack cost.

Objective of the learning agent. Existing works have focused primarily on studying RL
agents that maximizes cumulative reward in discounted infinite-horizon settings. However, for
many real-world applications, it is more appropriate to consider RL agents that maximizes
average reward in undiscounted infinite-horizon settings (Puterman, 1994; Mahadevan, 1996)—
in particular, this is a more suitable objective for applications that have cyclic tasks or tasks
without absorbing states, e.g., inventory management and scheduling problems (Tadepalli and
Ok, 1994; Puterman, 1994), and a robot learning to avoid obstacles (Mahadevan and Connell,
1992). In our work, the proposed optimization framework and theoretical results cover
both the optimality criteria— average reward criteria and discounted reward criteria—in
infinite-horizon settings.

Offline planning and online learning. Most of the existing works have focused on
attacks in an offline setting where the adversary first poisons the reward function in the
environment and then the RL agent finds a policy via planning (Zhang and Parkes, 2008;
Zhang et al., 2009; Ma et al., 2019). In contrast, we call a setting as online where the
adversary interacts with a learning agent to manipulate the feedback signals. One of the key
differences in these two settings is in measuring attacker’s cost: The `∞-norm of manipulation
is commonly studied for the offline setting; for the online setting, the cumulative cost of
attack over time (e.g., measured by `1-norm of manipulations) is more relevant and has not
been studied in literature. A recent contemporary work (Zhang et al., 2020) considers the
online setting, however, does not study `1-norm of manipulations as the attack cost. We
instantiate our attacks in both the offline and online settings with appropriate notions of
attack cost.

We note that our attacks are constructive, and we provide numerical simulations to
support our theoretical statements. Our results demonstrate that the attacker can easily
succeed in teaching (forcing) the victim to execute the desired target policy at a minimal cost.

1.2 Additional Related Work

Test-time attacks against RL. A growing body of contemporary works have studied
test-time attacks against RL (Chen et al., 2019), in particular, on RL algorithms with neural
network policies (Mnih et al., 2015; Schulman et al., 2015). These attacks are typically done
by adding noise in the observed state (e.g., a camera image) to fool the neural network policy
into taking malicious actions (Huang et al., 2017; Lin et al., 2017; Tretschk et al., 2018).
Different attack goals have been considered in these works, e.g., guiding the agent to some
adversarial states or forcing agent to take actions that maximizes adversary’s own rewards.
Our work is technically quite different and is focused on training-time attacks where the goal
is to force the agent to learn a target policy.

Teaching an RL agent. Poisoning attacks is mathematically equivalent to the formulation
of machine teaching with teacher being the adversary (Goldman and Kearns, 1995; Singla et al.,

3

Rakhsha, Radanovic, Devidze, Zhu, and Singla

2013, 2014; Zhu, 2015; Zhu et al., 2018; Chen et al., 2018; Mansouri et al., 2019; Peltola et al.,
2019; Devidze et al., 2020). In particular, there have been a number of recent works on teach-
ing an RL agent via providing an optimized curriculum of demonstrations (Cakmak and Lopes,
2012; Walsh and Goschin, 2012; Hadfield-Menell et al., 2016; Haug et al., 2018; Kamalaruban
et al., 2019; Tschiatschek et al., 2019; Brown and Niekum, 2019). However, these works have
focused on imitation-learning based RL agents who learn from provided demonstrations with-
out any reward feedback (Osa et al., 2018). Given that we consider RL agents who find policies
based on rewards, our work is technically very different from theirs. There is also a related lit-
erature on changing the behavior of an RL agent via reward shaping (Ng et al., 1999; Asmuth
et al., 2008); here the reward function is changed to only speed up the convergence of the learn-
ing algorithm while ensuring that the optimal policy in the modified environment is unchanged.

2. Environment and RL Agent

We consider a standard RL setting, based on Markov decision processes and RL agents that
optimize their expected utility. In a unified manner, we will cover two cases in which RL
agents are optimizing their total discounted rewards or their undiscounted average reward.
The following subsections will introduce our setting in more detail.

2.1 Environment, Policy, and Optimality Criteria

The environment is a Markov Decision Process (MDP) defined as M = (S,A,R, P, γ),
where S is the state space, A is the action space, R : S × A → R is the reward function,
P : S×A×S → [0, 1] is the state transition dynamics, i.e., P (s, a, s′) denotes the probability
of reaching state s′ when taking action a in state s, and γ ∈ [0, 1] is the discounting factor,
and d0 is the initail state distribution. Note that discount factor γ can be equal to 1, which
we treat as a special case, as explained in the paragraphs below.

We consider a class of deterministic policies: we denote a generic deterministic policy by
π, and we define it as a mapping from states to actions, i.e., π : S → A. Furthermore, we
assume that MDP M is ergodic, which implies that every policy π has a state distribution
µπ defined as:

µπ(s) =

{
(1− γ)

∑∞
t=0 γ

tP [st = s|s0 ∼ d0, π] if γ < 1

limN→∞
1
N

∑N−1
t=0 P [st = s|s0 ∼ d0, π] if γ = 1,

(1)

which satisfies µπ(s) > 0 for every state s (Puterman, 1994). For γ = 1, µπ corresponds to
the stationary state distribution induced by policy π, whereas for γ < 1, µπ corresponds
to the discounted state distribution induced by policy π. State distribution µπ satisfies the
following Bellman flow constraints:

µπ(s) = (1− γ) · d0(s) + γ ·
∑
s′

P (s′, π(s′), s) · µπ(s′). (2)

Given an initial state distribution d0, the expected average and discounted reward of
policy π are respectively equal to

lim
N→∞

1

N
E

[
N−1∑
t=0

R(st, at)|s0 ∼ d0, π

]
and E

[∞∑
t=0

γtR(st, at)|s0 ∼ d0, π

]
,

4

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

where the expectations are taken over the rewards received by the agent when starting from
initial state s0 ∼ d0 and following the policy π. In our work, we cover both the average
reward (Puterman, 1994; Mahadevan, 1996) and the discounted reward optimality criteria in
infinite-horizon settings (Puterman, 1994; Sutton and Barto, 2018). Throughout the paper,
the special case of γ = 1 represents the average reward problem setting, whereas γ < 1
represents the discounted reward problem setting. We unify these cases using a single score
of policy π defined as

ρ(π,M, d0) :=
∑
s

µπ(s) ·R(s, π(s)). (3)

Using policy scores ρ, we define the notion of optimality used in this paper. A policy π∗ is
optimal if for every other deterministic policy π we have ρπ∗ ≥ ρπ, and ε-robust optimal if
ρπ
∗ ≥ ρπ + ε also holds. As shown in prior work (and discussed later in the paper), score

ρ is closely related to the standard notions of state-action and state value functions, i.e.,
Q-values and V -values. For policy π, (shifted) Q-values and V -values are defined as3

Qπ(s, a) = E

[∞∑
t=0

γt · (rt − ρπ)|s0 = s, a0 = a, π

]
, V π(s) = Qπ(s, π(s)),

and they satisfy the following Bellman equations:

Qπ(s, a) = R(s, a)− ρπ + γ ·
∑
s′∈S

P (s, a, s′) · V π(s′). (4)

Finally, we introduce quantities that measure connectedness of MDP M . First, we define
a coefficient α = mins,a,s′,a′

∑
x∈S min

(
P (s, a, x), P (s′, a′, x)

)
, so that (1− α) is equivalent

to Hajnal measure of P (Puterman, 1994).4 Second, we define the notion of discounted
reach times for policy π as T π(s, s) = 0 and T π(s, s′) = E

[∑Lπ(s,s′)−1
i=0 γi

]
for s′ 6= s, where

Lπ(s, s′) is a random variable that counts the number of steps it takes to visit state s′ for
the first time starting from s and following π in M . The maximum discounted reach time for
policy π is denoted by Dπ = maxs,s′ T

π(s, s′), i.e., Dπ denotes the diameter of Markov chain
induced by policy π in MDP M . Note that reach times T π satisfy the following recursive
equations for s 6= s′:

T π(s, s′) =
∑
s′′∈S

P (s, π(s), s′′) · (1 + γ · T π(s′′, s′)),

which means that for a given MDP M and policy π, one can compute them efficiently since
this is just a system of linear equations.

3To facilitate exposure of our results in a unified manner, in the discounted reward setting, we are using
Q-values that are shifted from the standard definition by ρπ/(1 − γ). This modification allows using the
same Bellman equations for both the average and discounted rewards settings. When referring to standard
Q-values, we use the symbol Q instead (e.g., as used in the appendices).

4As discussed in (Puterman, 1994), the Hajnal measure of a Markov chain transition matrix provides
an upper bound on its subradius (the modulus of the second largest eigenvalue). Hence, this measure is
informative about the mixing times in MDP M .

5

Rakhsha, Radanovic, Devidze, Zhu, and Singla

2.2 RL Agent

We consider RL agents in the following two settings (also, see Figure 1).

Offline planning agent. In the offline setting, an RL agent is given an MDP M , and
chooses a deterministic optimal policy π∗ ∈ arg maxπ ρ(π,M, d0). The optimal policy
can be found via planning algorithms based on Dynamic Programming such as value
iteration (Puterman, 1994; Sutton and Barto, 2018).

Online learning agent. In the online setting, an RL agent does not know the MDP M
(i.e., R and P are unknown). At each step t, the agent stochastically chooses an action at
based on the previous observations, and then as feedback it obtains reward rt and transitions
to the next state st+1. In this paper, we consider agents with two performance measures:

1. For the case of average reward criteria with γ = 1, we consider a regret-minimization
learner. Performance of a regret-minimization learner in MDP M is measured by
its regret which after T steps is given by Regret(T,M) = ρ∗ · T −

∑T−1
t=0 rt, where

ρ∗ := ρ(π∗,M) is the optimal score. Well-studied algorithms with sublinear regret
exist for average reward criteria, e.g., UCRL algorithm (Auer and Ortner, 2007; Jaksch
et al., 2010) and algorithms based on posterior sampling method (Agrawal and Jia,
2017). For more details, we refer the reader to Appendix B.

2. For the case of discounted reward criteria with γ < 1, the type of learners we consider are
evaluated based on the number of suboptimal steps they take. An agent is suboptimal
at time step t if it takes an action not used by any near-optimal policy. This is
formulated as SubOpt(T,M, ε′) =

∑T−1
t=0 1

[
at /∈ {π(st) | ρπ ≥ ρπ

∗ − ε′}
]
where 1 [.]

denotes the indicator function and ε′ measures near-optimality of a policy w.r.t. score
ρ. Our analysis of attacks is based on E [SubOpt(T,M, ε′)] of the learner for a specific
value of ε′. Some bounds on this quantity are known for existing algorithms such as
classic Q-learning (Even-Dar and Mansour, 2003) and Delayed Q-learning (Strehl et al.,
2006) as discussed in more detail in Appendix B.

3. Attack Models and Problem Formulation

In this section, we formulate the problem of adversarial attacks on the RL agent in both the
offline and online settings. In what follows, the original MDP (before poisoning) is denoted
by M = (S,A,R, P , γ), and an overline is added to the corresponding quantities before
poisoning, such as ρπ, µπ, and α.

The attacker has a target policy π† and poisons the environment with the goal of teach-
ing/forcing the RL agent to executing this policy.5 The attacker is interested in doing a
stealthy attack with minimal cost to avoid being detected. We assume that the attacker
knows the original MDPM , i.e., the original reward function R and state transition dynamics
P . This assumption is standard in the existing literature on poisoning attacks against RL.
The attacker requires that the RL agent behaves as specified in Section 2, however the
attacker does not know the agent’s algorithm or internal parameters.

5Our results can be translated to attacks against the Batch RL agent studied by (Ma et al., 2019) where
the attacker poisons the training data used by the agent to learn MDP parameters.

6

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Environment Attacker 𝜋" Offline
planning agent

(𝑆,𝐴, 𝑅(, 𝑃() (𝑆, 𝐴,𝑅+, 𝑃+)

𝜋

(a) Poisoning attack against an RL agent doing offline planning

𝑅"#(𝑠#, 𝑎#)
𝑃"#(𝑠#, 𝑎#, .)

Environment Attacker 𝜋, Online
learning agent

𝑅- 𝑠#, 𝑎#
𝑃-(𝑠#, 𝑎#, .)

𝑎#

𝑎#𝑎#

(𝑟#, 𝑠#/0)

(𝑆,𝐴, 𝑅-, 𝑃-)

(b) Poisoning attack against an RL agent doing online learning

Figure 1: (a) Adversary first poisons the environment by manipulating reward function and
transition dynamics, then, the RL agent finds an optimal policy via planning algorithms
based on Dynamic Programming (Puterman, 1994; Sutton and Barto, 2018). (b) Adversary
interacts with an RL agent to manipulate the feedback signals; here, we consider an agent
who is learning a policy based on feedback received from the environment (see Section 2.2
for details).

3.1 Attack Against an Offline Planning Agent

In attacks against an offline planning agent, the attacker manipulates the original MDP
M = (S,A,R, P , γ) to a poisoned MDP M̂ = (S,A, R̂, P̂ , γ) which is then used by the RL
agent for finding the optimal policy, see Figure 1a.

Goal of the attack. Given a margin parameter ε, the attacker poisons the reward function
and the transition dynamics so that the target policy π† is ε-robust optimal in the poisoned
MDP M̂ , i.e., the following condition holds:

ρ(π†, M̂ , d0) ≥ ρ(π, M̂, d0) + ε, ∀π 6= π†. (5)

Cost of the attack. To define the cost of an attack, we quantify for each state-action
pair how much the attack changes the reward and transition dynamics associated to this
state-action pair, i.e., |R̂(s, a)−R(s, a)

∣∣ and ∑s′

∣∣P̂ (s, a, s′)− P (s, a, s′)
∣∣ respectively. The

cost for that state action-pair is the weighted sum of these values, with weights given by two
parameters, Cr and Cp respectively. The total cost is then measured as the `p-norm (for
p ≥ 1) of the costs across all state-action pairs. Formally, this can be written as

Cost(M̂,M,Cr, Cp, p) =

(∑
s,a

(
Cr ·

∣∣R̂(s, a)−R(s, a)
∣∣+ Cp ·

∑
s′

∣∣P̂ (s, a, s′)− P (s, a, s′)
∣∣)p)1/p

.

We will write the cost as Cost(M̂,M) when other parameters are clear from the context.
By taking the limits of Cp (resp. Cr) to infinity, the cost function enforces the attacker to
poison only the rewards (resp. only the transitions).

7

Rakhsha, Radanovic, Devidze, Zhu, and Singla

3.2 Attack Against an Online Learning Agent

In attacks against an online learning agent, the attacker at time t manipulates the reward
function R(st, at) and transition dynamics P (st, at, .) for the current state st and the agent’s
action at, see Figure 1b. Then, at time t, the (poisoned) reward rt is obtained from R̂t(st, at)
instead of R(st, at) and the (poisoned) next state st+1 is sampled from P̂t(st, at, .) instead of
P (st, at, .).

Goal of the attack. Specification of the attacker’s goal in this online setting is not as
straightforward as that in the offline setting, primarily because the agent might never converge
to any stationary policy. In our work, at time t when the current state is st, we measure the
mismatch of agent’s action at w.r.t. the target policy π† as 1 [at 6= π†(st)]. With this, we
define a notion of average mismatch of learner’s actions in time horizon T as follows:

AvgMiss(T) =
1

T
·
(T−1∑

t=0

1 [at 6= π†(st)]

)
. (6)

The goal of the attacker is to minimize AvgMiss(T).

Cost of the attack. We consider a notion of average cost of attack in time horizon T
denoted as AvgCost(T). This is defined as

1

T
·
(T−1∑

t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p)1/p

,

where the `p-norm (for p ≥ 1) is defined over a vector of length T with values quantifying
the attack cost at each time step t. One of the key differences in measuring attacker’s
cost for offline and online settings is the use of appropriate norm. While the `∞-norm of
manipulation is more suitable and commonly studied for the offline setting; for the online
setting, the cumulative cost of attack over time measured by the `1-norm is more relevant.

4. Attacks in Offline Setting

In this section, we introduce and analyze attacks against an offline planing agent that derives
its policy using a poisoned MDP M̂ . The attacker tries to minimally change the original
MDP M , while at the same time ensuring that the target policy is optimal in the modified
MDP M̂ .

4.1 Offline Attacks: Key Ideas and Attack Problem

The main obstacle in performing offline attacks as formulated in Section 3.1 is the complexity
of the optimization problem it leads to. To find MDP M̂ for which the target policy is
ε-robust optimal, one could directly utilize constraints expressed by (5). However, the number
of constraints in (5) equals (|A||S| − 1), i.e., it is exponential in |S|, making optimization
problems that directly utilize them intractable. We show that it is enough to satisfy these
constraints for (|S| · |A| − |S|) policies that we call neighbors of the target policy and which
we define as follows:

8

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Definition 1. For a policy π, its neighbor policy π{s; a} is defined as

π{s; a}(x) =

{
π(x) x 6= s
a x = s

.

The following lemma provides a simple verification criterion for examining whether a
policy of interest is ε-robust optimal in a given MDP. Its proof can be found in Appendix D.

Lemma 1. Policy π is ε-robust optimal iff we have ρπ ≥ ρπ{s;a} + ε for every state s and
action a 6= π(s).

In other words, Lemma 1 implies that (sub)optimality of the target policy can be
deduced by examining its neighbor policies. Using the definition of score ρ, Bellman flow
constraints (i.e., equation (2)), and Lemma 1, we can formulate the problem of modifying
MDP M = (S,A,R, P) to MDP M̂ = (S,A, R̂, P̂) as the following optimization problem:

min
M,R,P,µ

π† ,µ
π†{s;a}

Cost(M,M,Cr, Cp, p) (P1)

s.t. µπ† and P satisfy (2),

∀s, a 6= π†(s) : µπ†{s;a} and P satisfy (2),

∀s, a 6= π†(s) :
∑
s′

µπ†(s′) ·R
(
s′, π†(s

′)
)
≥
∑
s′

µπ†{s;a}(s′) ·R
(
s′, π†{s; a}(s′)

)
+ ε,

∀s, a, s′ : P (s, a, s′) ≥ δ · P (s, a, s′),

M = (S,A,R, P, γ).

Here, δ ∈ (0, 1] in the last set of constraints is a given parameter, specifying how much one
is allowed to decrease the original values of transition probabilities. δ > 0 is a regularity
condition which ensures that the new MDP is ergodic.6 In Appendix E, we provide a more
detailed discussion on δ and how to choose it. In the next section, we analyze this problem
in detail, providing bounds and discussions on its solution.

4.2 Offline Attacks: Theoretical Analysis

We start our analysis by defining quantities relevant for stating our formal results. Notice
that we denote the quantities defined w.r.t. to the original MDP M by putting an overline.
For example, V π

(s) and Qπ(s, a) denote V -values and Q-values of policy π in MDP M . As a
measure of the relative optimality gap between the target policy π† and its neighbor policies
π†{s; a}, we define the following state-action dependent variable:

χπε (s, a) =

[
ρπ{s;a}−ρπ+ε
µπ{s;a}(s)

]+
for a 6= π(s),

0 for a = π(s).
(7)

Here, [x]+ is equal to max{0, x}. As we show in our formal results, χπε with an appropriately
set ε captures how much one should change state-action values Qπ†(s, a) relative to state

6This follows because strictly positive trajectory probabilities in MDP M remain strictly positive in
the new MDP M̂ , which further implies that all states remain recurrent.

9

Rakhsha, Radanovic, Devidze, Zhu, and Singla

values V π†(s) in order to obtain a successful attack. To simplify our formal statements, we
also set

β(s, a) = ε · µπ†{s;a}(s) · 1 + γ ·Dπ†

1− (1− γ) ·Dπ† . (8)

Furthermore, we utilize the span of value function, defined as sp(V π†) = maxs V
π†(s) −

mins V
π†(s). In order to define the other quantities of interest, we order states by their values.

In particular, si denotes an order of states for 1 ≤ i ≤ |S| such that V π†(si) is decreasing
with i. This order allows us to define two important state-action dependent quantities F i
and Gi as

F i(s, a) = γ ·
i∑

j=1

(1− δ) · P (s, a, sj)(V
π†(sj)− V

π†(s|S|)),

Gi(s, a) = 2 ·
i∑

j=1

(1− δ) · P (s, a, sj).

for a 6= π†(s), and F i(s, π†(s)) = Gi(s, π†(s)) = 0 otherwise. We further set F0(s, a) = 0
and G0(s, a) = 0. Finally, for each state-action pair, we define a number k(s, a) to be
the largest element in {1, ..., |S|} such that γ · Cr · (V

π†(sk(s,a)) − V
π†(s|S|)) > 2 · Cp and

F k(s,a)(s, a) ≤ χπ†
β(s,a)

(s, a). If these conditions cannot be satisfied, we set k(s, a) = 0 (in our
results, this case would correspond to changing only rewards). We provide a more detailed
discussion on these quantities later in the section. We can now state the main result for the
offline attack setting.

Theorem 1. If M̂ is an optimal solution to optimization problem (P1), then

1− γ + γ · δ · α
2 · Cr−1 + γ · Cp−1 · sp(V

π†)

∥∥χπ†0 ∥∥∞ ≤ Cost(M̂,M) ≤
∥∥∥Cp ·Gk + Cr · (χ

π†

β
− F k)

∥∥∥
p
,

where χπ†
β
, Gk, and F k, are vectors of length |S|·|A| with components χπ†

β(s,a)
(s, a), Gk(s,a)(s, a),

and F k(s,a)(s, a).

This theorem gives lower and upper bounds on the cost of offline attacks against a
planning agent. By taking the limits of Cp (resp. Cr) to infinity, we can obtain the bounds
for the attack which only changes rewards (resp. transitions). As discussed in the earlier
version of the paper (Rakhsha et al., 2020), we note the following two points: (i) the attack
that only poisons transitions might not always be feasible, (ii) one can obtain a slightly
tighter lower bound for the attack that only poisons rewards. In the following proof sketch,
we provide some intuition on how the bounds Theorem 1 are derived.

Proof Sketch of Theorem 1. We split the proof-sketch in two parts, corresponding to the
upper and the lower bound respectively.

10

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Upper bound on the cost. We provide a constructive upper bound by introducing
an attack which is a solution to optimization problem (P1). The main idea behind this
approach is that at each state s, we can make each action a 6= π†(s) less valuable than action
π†(s) by decreasing R(s, a) (rewards) and changing the next state distribution (transitions).
The attack that we consider first modifies the transition dynamics, until the point when it
becomes less cost effective to change transitions than the rewards. In the second phase, the
attack changes only the rewards.

To make an action less valuable, the attacker can decrease the probability of transitioning
to a high-value state and increase the probability of transitioning to a low-value state, with
state values being obtained from value function V

π†(s). To construct an upper bound,
we analyze an attack that for each state-action pair (s, a) decreases the probability of
transitioning to the top k(s, a) highest valued states and increases probability P (s, a, s|S|) by
the amount that is equal to the total decrease. Note that this attack should not violate the
ergodicity constraint, i.e., P (s, a, si) can be decreased by at most (1− δ) ·P (s, a, si). For the
considered attack, the transition probabilities that correspond to the k(s, a) highest valued
states are maximally decreased, i.e., we modify P (s, a, si) to δ · P (s, a, si) for i ≤ k(s, a).
We now argue that k(s, a) as specified in the theorem accounts for two important factors:
minimizing the amount of change and optimizing the efficiency of changes.

First, note that we should not change the original MDP more than it is needed. When
changing transitions of state-action pair (s, a) for k(s, a) highest-valued states using the
approach described above, the state-action value function of that pair, i.e., Qπ†(s, a), decreases
by F k(s,a)(s, a). As we show in our analysis, χπ†

β(s,a)
(s, a) captures how much state-action

values, i.e., Qπ†(s, a), should be decreased in order for the attack to be successful. This
means that we should select k(s, a) so that F k(s,a)(s, a) does not exceed χπ†

β(s,a)
(s, a), i.e.,

F k(s,a)(s, a) ≤ χπ†
β(s,a)

(s, a).

Second, note that we need to account for the efficiency of the modifications. Let us
first consider the case of k(s, a) > 0. The difference V π†(sk(s,a)) − V π†(s|S|) should be
large enough so that modifying transitions P (s, a, ·) is more efficient than modifying reward
R(s, a). Since state-action values Qπ†(s, a) need to be decreased by χπ†

β(s,a)
(s, a), the notion of

efficiency in this context expresses how much Qπ†(s, a) changes per the unit cost of changing
P (s, a, .) and R(s, a) respectively. From equation (4), we can see that the attack efficiency of
changing reward R(s, a) is 1

Cr
, whereas the attack efficiency of changing transition P (s, a, sk)

is γ · 1
2·Cp · (V

π†(sk(s,a))− V
π†(s|S|)). Combining this with the definition of the cost of the

attack gives us that k(s, a) should satisfy γ · Cr · (V
π†(sk(s,a))− V

π†(s|S|)) > 2 · Cp. If this
condition is not possible to satisfy, then k(s, a) is equal to 0, which corresponds to the attack
that changes only rewards.

To summarize, we pick the largest k(s, a) such that Cr · (V
π†(sk(s,a))−V

π†(s|S|)) > 2 ·Cp
and F k(s,a)(s, a) ≤ χπ†

β(s,a)
(s, a). In case these conditions are infeasible, we chose k(s, a) = 0.

We then maximally decreases the probability of transitioning to the k(s, a) highest-valued
states when taking action a in state s, and accordingly increases the probability of transitioning
to state s|S|. This attack on transitions modifies P (s, a, .) by Gk(s,a)(s, a), which in turn incurs
the cost of Cp ·Gk(s,a)(s, a) and decreases Qπ†(s, a) by F k(s,a)(s, a). To obtain the desired

11

Rakhsha, Radanovic, Devidze, Zhu, and Singla

decrease in Q-values (i.e., χπ†
β(s,a)

(s, a)), we decrease R(s, a) by χπ†
β(s,a)

(s, a)− F k(s,a)(s, a)),

incurring the cost of Cr · (χ
π†

β(s,a)
(s, a)− F k(s,a)(s, a)). This gives us an upper bound on the

cost of an optimal solution to optimization problem P1.

Lower bound on the cost. Similar to our upper bound, our lower bound on the cost
mainly depends on three aspects of the problem: the efficiency of rewards poisoning, the
efficiency of transitions poisoning, and the difference in state-action values between the
target policy π† and other policies. The attack efficiency of poisoning rewards depends only
on Cr. However, the attack efficiency of poisoning transitions depends both on Cp and
the discrepancy among the state values, which are bounded by sp(V π†). Intuitively, if the
attack efficiency is low (resp. high), the lower bound on the cost needed to make an attack
successful will be high (resp. low). Furthermore, the lower bound depends on the difference
in state-action values between the target policy π† and its neighbor policies, as captured by∥∥χπ†0 ∥∥∞. Notice that while the upper bound is based on a specific attack, the lower bound is
attack-agnostic and implies that any successful attack must incur this cost.

The full proof can be found in Appendix E.

4.3 Offline Attacks: Efficiency of Solving the Problem

In the previous subsections, we formulated the problem of attacking an offline RL agent as
optimization problem (P1). This problem is difficult to solve in general due to the first three
constraints, which are non-linear and render the problem non-convex. However, note that in
prior work on these attacks, the special case where only rewards are poisoned is shown to be
a convex optimization problem in both the average reward and discounted reward optimality
criteria (Rakhsha et al., 2020; Ma et al., 2019).

Proposition 1. (Rakhsha et al., 2020; Ma et al., 2019) The special case of offline attacks in
which only rewards can be poisoned by the attacker, i.e. P̂ = P , is solvable through a convex
optimization problem.

As we discuss in Section 5.3, the problem (P1) also becomes convex if two additional
constraints are added: R̂(s, π†(s)) = R(s, π†(s)) and P̂ (s, π†(s), .) = P (s, π†(s), .). Notice
that these two constraints restrict the form of a solution in that the corresponding attack is
not allowed to manipulate rewards and transition for state-action pairs (s, π†(s)). We refer
to such attacks as non-target only, and we will discuss them further in Section 5.

5. Attacks in Online Setting

We now turn to attacks on an agent that learns over time using the environment feedback.
Unlike the planning agent from the previous section, an online learning agent derives its
policy from the interaction history, i.e., tuples of the form (st, at, rt, st+1). To attack an online
learning agent, an attacker changes the environment feedback, i.e., reward rt and state st+1.

5.1 Online Attacks: Key Ideas and Attack Problem

The underlying idea behind our approach is to utilize the fact that the policies of the learning
agents that we consider (see Section 2.2) will converge towards an optimal policy, and

12

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

therefore will take a bounded number of suboptimal actions. Hence, to steer a learning
agent towards selecting the target policy, it suffices to replace the environment feedback
(i.e., reward rt and the next state st+1) with a feedback sampled from an MDP that has the
target policy as its ε-robust optimal policy. Notice that such an MDP can be obtained using
optimization problem (P1). Now we separately consider the two cases: i) average reward
criteria with γ = 1 and ii) discounted reward criteria with γ < 1.

For the case of average reward criteria with γ = 1, we consider a regret-minimization
learner. With the following lemma we show that the above approach is sound: assuming that
a learner draws its experience from an ergodic MDP M that has π† as its ε-robust optimal
policy, the expected number of steps in which the learner deviates from π† is bounded by
O(E [Regret(T,M)]).

Lemma 2. (Lemma 2 in (Rakhsha et al., 2020)) Consider an ergodic MDP M with γ = 1
that has π† as its ε-robust optimal policy, and an online learning agent whose expected regret
in MDP M is E [Regret(T,M)]. The average mismatch of the agent w.r.t. the policy π† is
bounded by

E [AvgMiss(T)] ≤ µmax

ε · T
·
(
E [Regret(T,M)] + 2 ‖V π†‖∞

)
, (9)

with µmax := maxs,a µ
π†{s;a}(s). Here, µπ and V π are respectively the stationary distribution

and the value function of policy π in MDP M .

For the case of discounted reward criteria with γ < 1, we consider a learner with bounded
number of suboptimal steps. The following lemma is an analog to Lemma 2 and is proven
in Appendix F. This lemma is based on the simple observation: when a learner draws
its experience from an MDP M that has π† as its ε-robust optimal policy, instantiating
SubOpt(T,M, ε′) with ε′ = ε will give us the number of times the learner deviates from π†.

Lemma 3. Consider an ergodic MDP M with γ < 1 that has π† as its ε-robust optimal
policy, and an online learning agent whose expected number of suboptimal steps in an MDP
M is SubOpt(T,M, ε′). The average mismatch of the agent w.r.t. the policy π† is given by
AvgMiss(T) = 1

T · SubOpt(T,M, ε).

To conclude, if a learner has sublinear E [Regret(T,M)] (resp. E [SubOpt(T,M, ε)]),
Lemma 2 (resp. Lemma 3) implies that o(1) average mismatch can be achieved in expectation
using a sampling based attack that replaces the environment feedback (sampled from the
original MDP M) with a poisoned feedback sampled from MDP M̂ , where MDP M̂ is a
solution to optimization problem (P1).

However, the expected average cost of such an attack could be Ω(1) (non-diminishing
over time), even for a learner with sublinear E [Regret(T,M)] or E [SubOpt(T,M, ε)].
Intuitively, if a learner follows the target policy and there exists s for which R̂(s, π†(s)) 6=
R(s, π†(s)) or P̂ (s, π†(s), .) 6= P (s, π†(s), .), then the attacker would incur a non-zero cost
whenever the learner visits s. To avoid this issue, we need to enforce constraints on the
sampling MDP M̂ specifying that the attack does not alter rewards and transitions that
correspond to the state-action pairs of the target policy, i.e., (s, π†(s)). As mentioned in
Section 4.3, we refer to such attacks as non-target only. This brings us to the following
template that we utilize for attacks on an online learner:

13

Rakhsha, Radanovic, Devidze, Zhu, and Singla

• Modify the optimization problem (P1) by adding constraints R̂(s, π†(s)) = R(s, π†(s)) and
P̂ (s, π†(s), s

′) = P (s, π†(s), s
′). This gives us the following optimization problem:

min
M,R,P,µ

π† ,µ
π†{s;a}

Cost(M,M,Cr, Cp, p) (P2)

s.t. µπ† and P satisfy (2),

∀s, a 6= π†(s) : µπ†{s;a} and P satisfy (2),

∀s, a 6= π†(s) :
∑
s′

µπ†(s′) ·R
(
s′, π†(s

′)
)
≥
∑
s′

µπ†{s;a}(s′) ·R
(
s′, π†{s; a}(s′)

)
+ ε,

∀s, a, s′ : P (s, a, s′) ≥ δ · P (s, a, s′),

∀s, s′ : P (s, π†(s), s
′) = P (s, π†(s), s

′),

∀s : R(s, π†(s)) = R(s, π†(s)),

M = (S,A,R, P, γ).

• Obtain the sampling MDP M̂ by solving (P2).
• Use the sampling MDP M̂ instead of the environment M during the learning process, i.e.,

obtain rt from R̂(st, at) and st+1 ∼ P̂ (st, at, .) (see Figure 1b).

5.2 Online Attacks: Theoretical Analysis

We now state the formal results that connect the performance of the learning agent—the
regret and the number of suboptimal steps—to the average mismatch AvgMiss(T) and the
average attack cost AvgCost(T). Notice that Lemma 2 and Lemma 3 directly relate the
performance of the learning agent to the average mismatch w.r.t. the policy π†. Moreover,
we show that the average attack cost can be bounded by the product of two factors: one
which depends on the learner’s performance, and the other that specifies the cost of changing
the original MDP M to the sampling MDP M̂ , expressed in `∞-norm.

More formally, in the average reward criteria with γ = 1, for a learning agent with a
bound on the expected regret, we obtain:

Theorem 2 (Average reward criteria, γ = 1). Let M̂ be the optimal solution to (P2).
Consider the attack defined by rt obtained from R̂(st, at) and st+1 ∼ P̂ (st, at, .), and an
online learning agent whose expected regret in an MDP M is E [Regret(T,M)]. The
average mismatch of the learner is in expectation upper bounded by

E [AvgMiss(T)] ≤ µ̂max

ε · T
·
(
E
[
Regret(T, M̂)

]
+ 2

∥∥∥V̂ π†
∥∥∥
∞

)
.

Furthermore, the average attack cost is in expectation upper bounded by

E [AvgCost(T)] ≤ Cost(M̂,M,Cr, Cp,∞)

T
·
(
µ̂max

ε
·
(
E
[
Regret(T, M̂)

]
+2
∥∥∥V̂ π†

∥∥∥
∞

))1/p

.

Similarly, in the discounted reward criteria with γ < 1, for a learning agent with a bound
on the number of suboptimal steps, we obtain:

14

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Theorem 3 (Discounted reward criteria, γ < 1). Let M̂ be the optimal solution to (P2).
Consider the attack defined by rt obtained from R̂(st, at) and st+1 ∼ P̂ (st, at, .), and
an online learning agent whose expected number of suboptimal steps in an MDP M is
E [SubOpt(T,M, ε′)]. The average mismatch of the learner is in expectation given by

E [AvgMiss(T)] =
1

T
· E
[
SubOpt(T, M̂, ε)

]
.

Furthermore, the average attack cost is in expectation upper bounded by

E [AvgCost(T)] ≤ Cost(M̂,M,Cr, Cp,∞)

T
·
(
E
[
SubOpt(T, M̂, ε)

])1/p
.

A direct consequence of these theorems is that for a learner with sublinear E [Regret(T,M)]
(resp. E [SubOpt(T,M, ε)]), both the expected average mismatch and the expected average
attack cost will decrease over time, and the rate of decrease depends on the learner’s
performance.7 Note that, while we considered `p norms with p ≥ 1 to define the attack cost,
the above results can be generalized to include the case of p = 0. For p = 0, the expected
average cost is equivalent to the expected number of average mismatches, and the same
upper bound applies.

5.3 Online Attacks: Efficiency of Solving the Problem

In Section 5.1, we outlined a template for attacking an online learner that uses optimization
problem (P2) as its subroutine. In this subsection, we show that (P2) can be reformulated
as tractable convex program with linear constraints, which increases the computational
efficiency of the proposed attack, and makes it more scalable.

Observe that the first three constraints in optimization problem P2 are quadratic con-
straints. Since the attack does not change the transitions associated to π†, i.e., P (s, π†(s), s

′) =
P (s, π†(s), s

′), we have µπ† = µπ† and is no longer a variable in the optimization problem
(i.e., it is precomputed).

To tackle the 2nd and 3rd quadratic constraints, we use two key ideas which will enable
us to express these constraints with a linear constraint. The first key idea is to relate the
scores of the target policy and its neighbor policies, i.e., ρπ† and ρπ†{s;a}, to their the target
policy’s Q-values. By Corollary 1 in Appendix D, we know that

ρπ† − ρπ†{s;a} = µπ†{s;a}(s) ·
(
V π†(s)−Qπ†(s, a)

)
. (10)

This identity enables us to rewrite the third constraint in optimization problem (P2) so that
there are no quadratic terms of the form µπ†{s;a}(s′) ·R(s, π†{s; a}(s′)). In particular, using
Bellman equations (4), equation (10), and the fact that V π† = V

π† and ρπ† = ρπ† , we can
rewrite the 3rd constraint in (P2) as

∀s, a 6= π†(s) : V
π†(s)−R(s, a) + ρπ† − γ

∑
s′

P (s, a, s′) · V π†(s′) ≥ ε

µπ†{s;a}(s)
. (11)

7For some learning algorithms, guarantees on the learner’s performance, i.e., regret or number of
suboptimal steps, are true only with high probability: In that case, one would modify the results in Theorem 3
and Theorem 2 accordingly.

15

Rakhsha, Radanovic, Devidze, Zhu, and Singla

The only remaining nonlinear part in the modified constraint, i.e., equation (11), is 1

µ
π†{s;a}(s)

.
Now, we use the second key idea, which we also enable us to remove the 2nd constraint. We
rewrite 1

µ
π†{s;a}(s)

in terms of reach times T π† , which can be precomputed. More precisely, in
Lemma 8 from Appendix E, we show that

1

µπ{s;a}(s)
=

1 + γ ·
∑

s′ P (s, a, s′) · T π(s′, s)

1− (1− γ) ·
∑

s′ d0(s
′) · T π(s′, s)

.

Using this result, we can rewrite the equation (11) as

∀s, a 6= π†(s) : V
π†(s)−R(s, a) + ρπ† − γ ·

∑
s′

P (s, a, s′) ·
(
V
π†(s′) +

ε

η(s)
· T π†(s′, s)

)
≥ ε

η(s)
,

where η(s) = 1−(1−γ)
∑

s′ d0(s′)T
π†(s′, s). Note that variable µπ†{s;a} is no longer needed in

the optimization problem, which makes the 2nd constraint redundant. The new formulation
of optimization problem (P2) is therefore given by the following:

min
M,R,P

Cost(M,M,Cr, Cp, p) (P2’)

∀s, a 6= π†(s) :

V
π†(s)−R(s, a) + ρπ† − γ ·

∑
s′

P (s, a, s′) ·
(
V
π†(s′) +

ε

η(s)
· T π†(s′, s)

)
≥ ε

η(s)
,

∀s, a, s′ : P (s, a, s′) ≥ δ · P (s, a, s′),

∀s, s′ : P (s, π†(s), s
′) = P (s, π†(s), s

′),

∀s : R(s, π†(s)) = R(s, π†(s)),

M = (S,A,R, P, γ).

Since ρπ† , V π† , and T π† can be efficiently precomputed based on MDPM , and new constraints
are linear in the optimization variables, optimization problem (P2’) is convex and can be
efficiently solved.

Proposition 2. Problem (P2’) is a reformulation of problem (P2) and is a convex optimiza-
tion problem with linear constraints.

We conclude this section by noting that optimization problem (P2’) can be solved
separately for each state-action pair (s, a 6= π†(s)). Namely, the first constraint in (P2’) only
involves parameters of state-action pair (s, a), while the cost function is the `p-norm of a
vector whose each component only depends on the rewards and transitions of one state-action
pair (s, a). Hence, (P2’) can be broken into |S| · (|A| − 1) independent problems.

6. Numerical Simulations

In this section, we perform numerical simulations and empirically investigate the effectiveness
of the proposed attacks on two different environments. For the reproducibility of experimental
results and facilitating research in this area, the source code of our implementation is publicly
available.8

8Code: https://machineteaching.mpi-sws.org/files/jmlr2020_rl-policy-teaching_code.zip.

16

https://machineteaching.mpi-sws.org/files/jmlr2020_rl-policy-teaching_code.zip

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

𝜋"

𝑠$ 𝑠% 𝑠&𝑠'

Figure 2: Chain environment with
|S| = 4 states and |A| = 2 actions.

𝜋"

𝑠$ 𝑠%

𝑠& 𝑠' 𝑠(𝑠) 𝑠*

𝑠+ 𝑠,

Figure 3: Navigation environment with |S| = 9 states
and |A| = 2 actions.

6.1 Environments

The first environment we consider is a chain environment represented as an MDP with
four states and two actions, see Figure 2. Even though simple, this environment provides
a very rich and an intuitive problem setting to validate the theoretical statements and
understand the effectiveness of the attacks by varying different parameters. We will also vary
the number of states in the MDP to check the efficiency of solving different optimization
problems, and report run times. The second environment we consider is a navigation
environment represented as an MDP with nine states and two actions per state, see Figure 3.
This environment is inspired by a navigation task and is slightly more complex than the
environment in Figure 2. Below, we provide specific details of these two environments.

Details of the chain environment. The environment has |S| = 4 states and |A| = 2
actions given by {left, right}. The original reward function R is action independent and
has the following values: s1 and s2 are rewarding states with R(s1, .) = R(s2, .) = 0.5, state
s3 has negative reward of R(s3, .) = −0.5, and the reward of the state s0 given by R(s0, .)
will be varied in experiments. With probability 0.9, the actions succeed in navigating the
agent to left or right as shown on arrows; with probability 0.1 the agent’s next state is
sampled randomly from the set S. The target policy π† is to take right action in all states
as shown in Figure 2.

Details of the navigation environment. The environment has |S| = 9 states and
|A| = 2 actions per state. The original reward function R is action independent and
has the following values: R(s1, .) = R(s2, .) = R(s3, .) = −2.5, R(s4, .) = R(s5, .) = 1.0,
R(s6, .) = R(s7, .) = R(s8, .) = 0, and the reward of the state s0 given by R(s0, .) will be
varied in experiments. With probability 0.9, the actions succeed in navigating the agent as
shown on arrows; with probability 0.1 the agent’s next state is sampled randomly from the
set S. The target policy π† is to take actions as shown with bold arrows in Figure 3.

6.2 Attacks in the Offline Setting: Setup and Results

Attack strategies. For the offline setting, we compare the performance of our attack
strategy (JAttack) with three different baseline strategies (NT-JAttack, RAttack,
DAttack) as discussed below:

17

Rakhsha, Radanovic, Devidze, Zhu, and Singla

1. JAttack: joint rewards and transitions attack using (R̂, P̂) obtained as a solution to
the problem (P1).

2. NT-JAttack: joint rewards and transitions attack using (R̂, P̂) obtained as a solu-
tion to the problem (P2); here, NT- prefix is used to highlight that non-target only
manipulations are allowed.

3. RAttack: rewards only attack obtained as a solution to the problem (P1) when
P̂ := P (alternatively, by taking the limit of Cp to infinity in the problem).

4. DAttack: transitions only attack obtained as a solution to the problem (P1) when
R̂ := R (alternatively, by taking the limit of Cr to infinity in the problem).

We set p =∞ (i.e., `∞-norm) in the objective when solving different attack problems.
We note that optimal solutions for the problems corresponding to RAttack and NT-
JAttack can be computed efficiently using standard optimization techniques (also, refer
to discussions in Section 4.3 and Section 5.3). Problems corresponding to JAttack and
DAttack are computationally more challenging, and we provide a simple yet effective
approach towards finding an approximate solution—specific implementation details are
provided in Appendix C. For more detailed results and analysis of the rewards only and
transitions only attacks (RAttack and DAttack), we refer the reader to the earlier version
of the paper (Rakhsha et al., 2020).

Experimental setup and parameter choices. For all the experiments, we set Cr = 3,
Cp = 1, and use `∞-norm in the measure of the attack cost (see Section 3.1). The regularity
parameter δ in the problems (P1) and (P2) is set to be 0.0001. In the experiments, we vary
R(s0, .) ∈ [−5, 5] and vary ε margin ∈ [0, 1] for the π† policy. The results are reported as an
average of 10 runs. For the offline setting, we only report results for the discounted reward
criteria with γ = 0.99; the results for the average reward criteria are very similar to the ones
reported here. For the chain environment, we also vary the number of states |S| and report
run times for solving different attack problems.

Results. Figure 4 reports results for the chain environment (with |S| = 4) and Figure 5
reports results for the navigation environment. The key takeaways are same for both the
environments, and we want to highlight three points here. First, as we increase the desired
ε margin, the attack problem becomes more difficult. While the attacks that allow reward
poisoning (JAttack, NT-JAttack, RAttack) are always feasible though with increasing
attack cost, it becomes infeasible to do transitions only poisoning attack (DAttack) (e.g.,
in Figure 4, DAttack attack is not possible for ε > 0.75). Second, the plots show that joint
attack (JAttack) can have much lower cost compared to reward only attack (RAttack)
or transitions only attack (DAttack). Third, the plots also show that our joint attack
strategy (JAttack) has much lower cost compared to the non-target only attack strategy
(NT-JAttack). Finally, to check the efficiency of solving above mentioned attack problems,
we vary the number of states in the chain environment and report the run times in Table 1.

18

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

-5 -4 -3 -2 -1 0 1 2 3 4 5
Reward for s0 state

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

A
tta

ck
co

st
(` ∞
)

RAttack (`∞)
DAttack (`∞)

JAttack (`∞)
NT-JAttack

(a) Vary R(s0, .)

0 0.2 0.4 0.6 0.8 1.0
ε margin

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

A
tta

ck
co

st
(` ∞
) Infeasible

RAttack (`∞)
DAttack (`∞)

JAttack (`∞)
NT-JAttack

(b) Vary ε margin

Figure 4: (Chain environment) Results for poisoning attacks in the offline setting from
Section 4. (a) shows results when we vary reward R(s0, .) and (b) shows results when we
vary ε margin.

-5 -4 -3 -2 -1 0 1 2 3 4 5
Reward for s0 state

0.0

3.0

6.0

9.0

12.0

15.0

A
tta

ck
co

st
(` ∞
)

RAttack (`∞)
DAttack (`∞)

JAttack (`∞)
NT-JAttack

(a) Vary R(s0, .)

0 0.2 0.4 0.6 0.8 1.0
ε margin

0.0

3.0

6.0

9.0

12.0

15.0

A
tta

ck
co

st
(` ∞
) Infeasible

RAttack (`∞)
DAttack (`∞)

JAttack (`∞)
NT-JAttack

(b) Vary ε margin

Figure 5: (Navigation environment) Results for poisoning attacks in the offline setting
from Section 4. (a) shows results when we vary reward R(s0, .) and (b) shows results when
we vary ε margin.

PPPPPPPPPAttacks
|S|

4 10 20 30 50 70 100

RAttack 0.01s 0.02s 0.04s 0.06s 0.14s 0.29s 0.61s
DAttack 3.09s 7.46s 14.98s 24.73s 46.02s 77.57s 126.97s

NT-JAttack 0.06s 0.11s 0.22s 0.34s 0.60s 0.83s 1.27s
JAttack 8.35s 20.52s 42.45s 64.98s 116.01s 180.36s 273.20s

Table 1: (Chain environment) Run times for solving different attack problems as we vary
the number of states |S|. Numbers are reported in seconds and are based on an average of 5
runs for each setting.

19

Rakhsha, Radanovic, Devidze, Zhu, and Singla

6.3 Attacks in the Online Setting: Setup and Results

Attack strategies. For the online setting, we compare the performance of our attack
strategy (NT-JAttack) with two different baseline strategies (JAttack, None) as discussed
below:

1. NT-JAttack: joint rewards and transitions attack using (R̂, P̂) obtained as a solu-
tion to the problem (P2); here, NT- prefix is used to highlight that non-target only
manipulations are allowed.

2. JAttack: joint rewards and transitions attack using (R̂, P̂) obtained as a solution to
the problem (P1).

3. None: a default setting without adversary denoted as None where environment
feedback is sampled from the original MDP M .

The implementation details for NT-JAttack and JAttack are discussed above in
Section 6.2 and Appendix C.

Experimental setup and parameter choices. For all the experiments, we set Cr = 3,
Cp = 1. The regularity parameter δ in the problems (P1) and (P2) is set to be 0.0001. In
the experiments, we fix R(s0, .) = −2.5 and ε = 0.1 margin for the π† policy. We plot the
measure of the attacker’s achieved goal in terms of AvgMiss and attacker’s cost in terms of
AvgCost for `1-norm measured over time t (see Section 3.2). The results are reported as an
average of 20 runs. We separately run experiments for the average reward optimality criteria
(with γ = 1) and the discounted reward optimality criteria (with γ = 0.99). For the average
reward criteria, we consider an RL agent implementing the UCRL learning algorithm (Auer
and Ortner, 2007). For the discounted reward criteria, we consider an RL agent implementing
Q-learning with an exploration parameter set to 0.001 (Even-Dar and Mansour, 2003). For
further details about the RL agents, we refer the reader to Section 2.2 and Appendix B. For
both the settings, the attacker does not use any knowledge of the agent’s learning algorithm.

Results. Figure 6 reports results for the chain environment (with |S| = 4) and Figure 7
reports results for the navigation environment. The key takeaways are same for both the
environments, and we want to highlight two points here. First, the results in Figures 6 and 7
show that our proposed online attacks with NT-JAttack are highly effective for both the
criteria: learner is forced to follow the target policy while the attacker’s cost is low. In
contrast, we can see that the online attacks with JAttack lead to high cost for the attacker,
i.e., the cumulative cost is linear w.r.t. time as anticipated in Section 5.1 (see discussions
following Lemma 2). Second, when comparing AvgMiss and AvgCost w.r.t. time t for
NT-JAttack in these two settings, we see that the average values continue to decay for
γ = 1, whereas they saturate for γ = 0.99. This is because of the convergence guarantees of
the RL agent’s learning algorithm: the Q-learning algorithm used for γ = 0.99 has a constant
exploration rate whereas the UCRL algorithm used for γ = 1 has no-regret guarantees which
in turn leads to o(1) average mismatch and average attack cost (see Theorems 2 and 3, and
Appendix B).

20

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

1 20 40 60 80 100
Time t (x103)

0.0

0.5

1.0
A

ve
ra

ge
m

is
m

at
ch

None
JAttack (`∞)

NT-JAttack

(a) AvgMiss: γ = 1

1 20 40 60 80 100
Time t (x103)

0.0

0.2

0.4

0.6

A
ve

ra
ge

at
ta

ck
co

st

None
JAttack (`∞)

NT-JAttack

(b) AvgCost: γ = 1

1 20 40 60 80 100
Time t (x103)

0.0

0.5

1.0

A
ve

ra
ge

m
is

m
at

ch

None
JAttack (`∞)

NT-JAttack

(c) AvgMiss: γ = 0.99

1 20 40 60 80 100
Time t (x103)

0.0

0.2

0.4

0.6

A
ve

ra
ge

at
ta

ck
co

st

None
JAttack (`∞)

NT-JAttack

(d) AvgCost: γ = 0.99

Figure 6: (Chain environment) Results for poisoning attacks in the online setting from
Section 5. (a, b) plots show results for the average reward criteria (γ = 1) with UCRL as
the agent’s learning algorithm. (c, d) plots show results for the discounted reward criteria
(γ = 0.99) with Q-learning as the agent’s learning algorithm.

7. Conclusion and Future Work

We studied a security threat to reinforcement learning (RL) where an attacker poisons the
environment, thereby forcing the agent into executing a target policy. Our work provides
theoretical underpinnings of environment poisoning against RL along several new attack
dimensions, including (i) adversarial manipulation of the rewards and transition dynamics
jointly, (ii) a general optimization framework for attack against RL agents maximizing
rewards in undiscounted or discounted infinite horizon settings, and (iii) analyzing different
attack costs for offline planning and online learning settings.

There are several promising directions for future work. These include expanding the
attack models (e.g., manipulating actions or observations of the agent) and broadening the set
of attack goals (e.g., under partial specification of target policy). At the same time, relaxing
the assumptions on the attacker’s knowledge of the underlying MDP could lead to more
robust attack strategies. Another interesting future direction would be to make the studied
attack models more scalable, e.g., applicable to continuous and large environments. Another

21

Rakhsha, Radanovic, Devidze, Zhu, and Singla

1 10 20 30 40 50
Time t (x104)

0.0

0.5

1.0

A
ve

ra
ge

m
is

m
at

ch

None
JAttack (`∞)

NT-JAttack

(a) AvgMiss: γ = 1

1 10 20 30 40 50
Time t (x104)

0.00

0.05

0.10

0.15

A
ve

ra
ge

at
ta

ck
co

st

None
JAttack (`∞)

NT-JAttack

(b) AvgCost: γ = 1

1 10 20 30 40 50
Time t (x104)

0.0

0.5

1.0

A
ve

ra
ge

m
is

m
at

ch

None
JAttack (`∞)

NT-JAttack

(c) AvgMiss: γ = 0.99

1 10 20 30 40 50
Time t (x104)

0.00

0.05

0.10

0.15

A
ve

ra
ge

at
ta

ck
co

st

None
JAttack (`∞)

NT-JAttack

(d) AvgCost: γ = 0.99

Figure 7: (Navigation environment) Results for poisoning attacks in the online setting
from Section 5. (a, b) plots show results for the average reward criteria (γ = 1) with UCRL
as the agent’s learning algorithm. (c, d) plots show results for the discounted reward criteria
(γ = 0.99) with Q-learning as the agent’s learning algorithm.

interesting topic would be to devise attack strategies against RL agents that use transfer
learning approaches, especially in multi-agent RL systems, see (Da Silva and Costa, 2019).

While the experimental results demonstrate the effectiveness of the studied attack models,
they do not reveal which types of learning algorithms are most vulnerable to the attack
strategies studied in the paper. Further experimentation using a diverse set of the state
of the art learning algorithms could reveal this, and provide some guidance in designing
defensive strategies and novel RL algorithms robust to manipulations.

Acknowledgements

Xiaojin Zhu is supported in part by NSF 1545481, 1623605, 1704117, 1836978 and the
MADLab AF Center of Excellence FA9550-18-1-0166.

22

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

References

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning:
worst-case regret bounds. In Advances in Neural Information Processing Systems, 2017.

Scott Alfeld, Xiaojin Zhu, and Paul Barford. Data poisoning attacks against autoregressive
models. In AAAI, 2016.

John Asmuth, Michael L Littman, and Robert Zinkov. Potential-based shaping in model-based
reinforcement learning. In AAAI, pages 604–609, 2008.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted rein-
forcement learning. In Advances in Neural Information Processing Systems, pages 49–56,
2007.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine
learning. Pattern Recognition, 84:317–331, 2018.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector
machines. In ICML, 2012.

Daniel S Brown and Scott Niekum. Machine teaching for inverse reinforcement learning:
Algorithms and applications. In AAAI, pages 7749–7758, 2019.

Maya Cakmak and Manuel Lopes. Algorithmic and human teaching of sequential decision
tasks. In AAAI, 2012.

Olivier Chapelle, Eren Manavoglu, and Rómer Rosales. Simple and scalable response
prediction for display advertising. ACM TIST, 5(4):61:1–61:34, 2014.

Tong Chen, Jiqiang Liu, Yingxiao Xiang, Wenjia Niu, Endong Tong, and Zhen Han. Adver-
sarial attack and defense in reinforcement learning from AI security view. Cybersecurity, 2
(1):11, 2019.

Yuxin Chen, Adish Singla, Oisin Mac Aodha, Pietro Perona, and Yisong Yue. Understanding
the role of adaptivity in machine teaching: The case of version space learners. In NeurIPS,
pages 1483–1493, 2018.

Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for
multiagent reinforcement learning systems. Journal of Artificial Intelligence Research, 64:
645–703, 2019.

Rati Devidze, Farnam Mansouri, Luis Haug, Yuxin Chen, and Adish Singla. Understanding
the power and limitations of teaching with imperfect knowledge. In IJCAI, pages 2647–2654,
2020.

Richard Durrett and R Durrett. Essentials of stochastic processes, volume 1. Springer, 1999.

Eyal Even-Dar and Yishay Mansour. Learning rates for q-learning. Journal of machine
learning Research, 5(Dec):1–25, 2003.

23

Rakhsha, Radanovic, Devidze, Zhu, and Singla

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Experts in a markov decision process.
In Advances in Neural Information Processing Systems, pages 401–408, 2005.

Sally A Goldman and Michael J Kearns. On the complexity of teaching. Journal of Computer
and System Sciences, 50(1):20–31, 1995.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative
inverse reinforcement learning. In Advances in Neural Information Processing Systems,
pages 3909–3917, 2016.

Luis Haug, Sebastian Tschiatschek, and Adish Singla. Teaching inverse reinforcement learners
via features and demonstrations. In NeurIPS, 2018.

Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and J Doug Tygar.
Adversarial machine learning. In Proceedings of the 4th ACM workshop on Security and
artificial intelligence, pages 43–58, 2011.

Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. CoRR, abs/1702.02284, 2017.

Yunhan Huang and Quanyan Zhu. Deceptive reinforcement learning under adversarial
manipulations on cost signals. In GameSec, pages 217–237, 2019.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on stochastic
bandits. In NeurIPS, pages 3644–3653, 2018.

Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive
teaching algorithms for inverse reinforcement learning. In IJCAI, pages 2692–2700, 2019.

Pang Wei Koh, Jacob Steinhardt, and Percy Liang. Stronger data poisoning attacks break
data sanitization defenses. CoRR, abs/1811.00741, 2018.

Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning attacks on
factorization-based collaborative filtering. In Advances in neural information processing
systems, pages 1885–1893, 2016.

Chong Li and Meikang Qiu. Reinforcement Learning for Cyber-Physical Systems: with
Cybersecurity Case Studies. Chapman and Hall/CRC, 2019.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach
to personalized news article recommendation. In WWW, pages 661–670, 2010.

Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu, and Min
Sun. Tactics of adversarial attack on deep reinforcement learning agents. In IJCAI, pages
3756–3762, 2017.

Fang Liu and Ness B. Shroff. Data poisoning attacks on stochastic bandits. In ICML, pages
4042–4050, 2019.

24

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. Data poisoning attacks in
contextual bandits. In GameSec, pages 186–204, 2018.

Yuzhe Ma, Xuezhou Zhang, Wen Sun, and Jerry Zhu. Policy poisoning in batch reinforcement
learning and control. In NeurIPS, pages 14543–14553, 2019.

Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and
empirical results. Machine Learning, 22(1-3):159–195, 1996.

Sridhar Mahadevan and Jonathan Connell. Automatic programming of behavior-based robots
using reinforcement learning. Artif. Intell., 55(2):311–365, 1992.

Farnam Mansouri, Yuxin Chen, Ara Vartanian, Jerry Zhu, and Adish Singla. Preference-
based batch and sequential teaching: Towards a unified view of models. In NeurIPS, pages
9195–9205, 2019.

Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks
on machine learners. In AAAI, pages 2871–2877, 2015.

Brad Miller, Paul Pearce, Chris Grier, Christian Kreibich, and Vern Paxson. What’s clicking
what? techniques and innovations of today’s clickbots. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 164–183.
Springer, 2011.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533,
2015.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In ICML, 1999.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan
Peters, et al. An algorithmic perspective on imitation learning. Foundations and Trends®
in Robotics, 7(1-2):1–179, 2018.

Tomi Peltola, Mustafa Mert Çelikok, Pedram Daee, and Samuel Kaski. Machine teaching of
active sequential learners. In NeurIPS, 2019.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1st edition, 1994. ISBN 0471619779.

Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teach-
ing via environment poisoning: Training-time adversarial attacks against reinforcement
learning. In ICML, 2020.

Paul E Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela M Veloso. Interactive robot task
training through dialog and demonstration. In Proceedings of the International Conference
on Human-robot interaction, pages 49–56, 2007.

25

Rakhsha, Radanovic, Devidze, Zhu, and Singla

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In ICML, pages 1889–1897, 2015.

Adish Singla, Ilija Bogunovic, G Bartók, A Karbasi, and A Krause. On actively teaching the
crowd to classify. In NIPS Workshop on Data Driven Education, 2013.

Adish Singla, Ilija Bogunovic, Gábor Bartók, Amin Karbasi, and Andreas Krause. Near-
optimally teaching the crowd to classify. In ICML, 2014.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac
model-free reinforcement learning. In ICML, pages 881–888, 2006.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Prasad Tadepalli and DoKyeong Ok. H-learning: A reinforcement learning method to
optimize undiscounted average reward. 1994.

Edgar Tretschk, Seong Joon Oh, and Mario Fritz. Sequential attacks on agents for long-term
adversarial goals. CoRR, abs/1805.12487, 2018.

Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-
aware teaching: Inverse reinforcement learning with preferences and constraints. In
NeurIPS, 2019.

Thomas J. Walsh and Sergiu Goschin. Dynamic teaching in sequential decision making
environments. In UAI, pages 863–872, 2012.

Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli.
Is feature selection secure against training data poisoning? In ICML, pages 1689–1698,
2015.

Haoqi Zhang and David C. Parkes. Value-based policy teaching with active indirect elicitation.
In AAAI, 2008.

Haoqi Zhang, David C. Parkes, and Yiling Chen. Policy teaching through reward function
learning. In EC, 2009.

Xuezhou Zhang, Yuzhe Ma, Adish Singla, and Xiaojin Zhu. Adaptive reward-poisoning
attacks against reinforcement learning. In ICML, 2020.

Xiaojin Zhu. Machine teaching: An inverse problem to machine learning and an approach
toward optimal education. In AAAI, pages 4083–4087, 2015.

Xiaojin Zhu. An optimal control view of adversarial machine learning. CoRR, abs/1811.04422,
2018.

Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N Rafferty. An overview of machine
teaching. CoRR, abs/1801.05927, 2018.

26

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Appendix A. List of Appendices

In this section we provide a brief description of the content provided in the appendices of
the paper.
• Appendix B gives a few concrete examples of the learning agents considered in this paper.
(Section 2)

• Appendix C contains implementation details for different attack strategies used in numerical
simulations. (Section 6)

• Appendix D contains proof of Lemma 1 and some general results. (Section 4)
• Appendix E contains proof of Theorem 1 for offline attacks and related discussions.
(Section 4)

• Appendix F contains proofs for online attacks including Lemma 3, Theorem 2, and
Theorem 3. (Section 5)

Appendix B. Examples of Online Learning Agents

In this appendix, we provide examples of online learning agents for each of the two settings
of interest: average reward optimality criteria with γ = 1, and discounted reward optimality
criteria with γ < 1.

Average reward optimality criteria. For the case of average reward criteria with γ = 1,
we consider a regret-minimization learner. Performance of a regret-minimization learner
in MDP M is measured by its regret which after T steps is given by Regret(T,M) =
ρ∗ · T −

∑T−1
t=0 rt, where ρ

∗ := ρ(π∗,M) is the optimal score. Well-studied algorithms with
sublinear regret exist for average reward criteria, e.g., UCRL algorithm (Auer and Ortner,
2007; Jaksch et al., 2010) and algorithms based on posterior sampling method (Agrawal and
Jia, 2017). More concretely, for the UCRL algorithm, with probability 1− δ we have

Regret(T,M) ≤ 34 ·D|S|

√
|A|T log

(
T

δ

)
,

where D is the diameter of MDP (Auer and Ortner, 2007; Jaksch et al., 2010).

Discounted reward optimality criteria. For the case of discounted reward criteria
with γ < 1, the type of learners we consider are evaluated based on the number of sub-
optimal steps they take. An agent is suboptimal at time step t if it takes an an ac-
tion not used by any near-optimal policy. This is formulated as SubOpt(T,M, ε′) =∑T−1

t=0 1
[
at /∈ {π(st) | ρπ ≥ ρπ

∗ − ε′}
]
where 1 [.] denotes the indicator function and ε′ mea-

sures near-optimality of a policy w.r.t. score ρ. Our analysis of attacks is based on
E [SubOpt(T,M, ε′)] of the learner for a specific value of ε′. Some bounds on this quantity
are known for existing algorithms such as classic Q-learning (Even-Dar and Mansour, 2003)
and Delayed Q-learning (Strehl et al., 2006).

As a concrete example, let us consider the classic Q-learning (Even-Dar and Mansour,
2003). We can obtain an upper bound on E [SubOpt(T,M, ε′)] of this algorithm based on
the results from (Even-Dar and Mansour, 2003). Let Qt(s, a) denote the Q-values estimated

27

Rakhsha, Radanovic, Devidze, Zhu, and Singla

by the learner at time step t and let πt be the greedy policy with respect to Qt. These values
will converge to the Q-values of the optimal policy π∗ denoted by Q∗.9

Consider any ε′, δ > 0. Then, as shown in (Even-Dar and Mansour, 2003), there exists a
number N(ε′/2, δ) such that with probability of at least 1− δ we have ‖Qt −Q∗‖∞ ≤ ε′/2
for t ≥ N(ε′/2, δ). This means that for each state s, we have:

Q∗(s, πt(s)) ≥ Qt(s, πt(s))−
ε′

2
≥ Qt(s, π∗(s))−

ε′

2
≥ Q∗(s, π∗(s))− ε′,

where the first and the third inequality holds due to ‖Qt −Q∗‖∞ ≤ ε′/2 and the second
inequality holds given that πt is the greedy policy with respect to Qt. Furthermore, based
on the results in (Schulman et al., 2015), the following holds for any two policies π and π′:

ρπ − ρπ′ =
∑
s∈S

µπ
′
(s) ·

(
Qπ(s, π(s))−Qπ(s, π′(s))

)
.

Since µπ′(s) is a distribution, we conclude that for t ≥ N(ε′/2, δ),

ρπt = ρπ
∗

+
∑
s∈S

µπt(s) ·
(
Q∗(s, πt(s))−Q∗(s, π∗(s))

)
≥ ρπ∗ − ε′,

which means that πt is near-optimal with a margin ε′.
Considering β be the exploration rate (i.e., the probability of taking random action

instead of the action from greedy policy), with probability of at least 1− δ we get

E
[
SubOpt(T,M, ε′)

]
≤

{
T for T < N(ε′/2, δ)

N(ε′/2, δ) + β ·
(
T −N(ε′/2, δ)

)
for T ≥ N(ε′/2, δ)

.

Appendix C. Numerical Simulations: Implementation Details (Section 6)

Here, we provide implementation details for attack strategies. For the reproducibility of
experimental results and facilitating research in this area, the source code of our implemen-
tation is publicly available.10 We note that optimal solutions for the problems corresponding
to RAttack and NT-JAttack can be computed efficiently using standard optimization
techniques (also, refer to discussions in Section 4.3 and Section 5.3). Problems corresponding
to JAttack and DAttack are computationally more challenging, and we provide a simple
yet effective approach towards finding an approximate solution.

Implementation details for DAttack. To obtain a solution for DAttack, consider
the transitions only attack variant of the problems (P1) and (P2) (i.e., R̂ := R). Then, we
obtain an approximate solution to the problem (P1) by iteratively solving the problem (P2)
as follows:
• As a first step, we use a simple heuristic to obtain a pool of transition kernels {P̃} by

perturbations of P that increase the score ρ of the target policy π†. Here, these transition
kernels P̃ in the pool differ from P only for the actions taken by the target policy, i.e., for
state action pairs (s, π†(s)) ∀s ∈ S.
9Note that in the classic algorithm, Q-values are not shifted as they are in our definition, and thus, we

are using the symbol Q instead of Q
10Code: https://machineteaching.mpi-sws.org/files/jmlr2020_rl-policy-teaching_code.zip.

28

https://machineteaching.mpi-sws.org/files/jmlr2020_rl-policy-teaching_code.zip

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

• As the second step, we take each of P̃ from this pool as an input to the problem (P2)
instead of P , which in turn gives us a corresponding pool of solutions {P̂}. Then, we pick
a solution from this pool of solutions with the minimal cost.
For further details about the transitions only attack strategy (DAttack), we refer the

reader to the earlier version of the paper (Rakhsha et al., 2020).

Implementation details for JAttack. To obtain a solution for JAttack, we use the
similar idea of approximately solving the problem (P1) by iteratively solving the problem (P2)
as follows:
• As a first step, we obtain a solution for RAttack and DAttack using the above mentioned

techniques. Let us denote these solutions to rewards only and transitions only poisoning
attacks as R̂only and P̂only respectively. Note that the DAttack attack strategy might be
infeasible, and in this case we set P̂only := P .

• As a second step, we use a simple heuristic to obtain a pool of rewards denoted as {R̃}
and a pool of transition kernels denoted as {P̃}. The pool {R̃} is generated by considering
convex combinations of R̂only and R, i.e., R̃ = (1− α) · R̂only + α ·R for α ∈ [0, 1] with a
desired level of discretization. The pool {P̃} is generated similarly by considering convex
combinations of P̂only and P .

• As the final step, we take all possible pairs 〈R̃, P̃ 〉 of rewards and transition kernels from
these pools as an input to the problem (P2) instead of inputting 〈R,P 〉, which in turn
gives us a corresponding pool of solutions {〈R̂, P̂ 〉}. Then, we pick a solution from this
pool of solutions with the minimal cost.

We note that the key common idea for obtaining solutions to DAttack and JAttack is
to approximately solve the problem (P1) by iteratively solving the problem (P2). One can
replace the specific heuristics to generate the pool {P̃} for DAttack and the pool {〈R̃, P̃ 〉}
for JAttack with alternate methods. Furthermore, the run time of solving the problem (P1)
would depend on the number of iterations we invoke the problem (P2) internally, which in
turn provides a simple way to trade-off the run time and attack cost.

Appendix D. Proofs for Offline Attacks: Lemma 1 (Section 4)

We prove Lemma 1 through several intermediate results. The first one is the following results
of (Even-Dar et al., 2005) and (Schulman et al., 2015).

Lemma 4. (Lemma 7 in (Even-Dar et al., 2005), Equation (2) in (Schulman et al., 2015))
For two policies π and π′ we have:

ρπ − ρπ′ =
∑
s∈S

µπ
′
(s)
(
Qπ(s, π(s))−Qπ(s, π′(s))

)
.

We will use the following corollary which is a direct consequence of Lemma 4.

Corollary 1. For any policy π and its neighbor policy π{s; a} we have:

ρπ − ρπ{s;a} = µπ{s;a}(s)
(
Qπ(s, π(s))−Qπ(s, a)

)
.

Next, we provide a sufficient condition for a policy π to be uniquely optimal.

29

Rakhsha, Radanovic, Devidze, Zhu, and Singla

Lemma 5. If we have ρπ ≥ ρπ{s;a} + ε for every state s and action a 6= π(s), and ε > 0,
then π is the only optimal policy.

Proof. Let arbitrary s ∈ S and a ∈ A be such that a 6= π(s). Based on corollary 1, we have

Qπ(s, π(s))−Qπ(s, a) =
ρπ − ρπ{s;a}

µπ{s;a}(s)
> 0. (12)

Note that in this paper we are focusing on ergodic MDPs, thus, we know µπ{s;a}(s) > 0.
Now let π′ 6= π be a policy with π′(s′) = a′ 6= π(s′). Using (12) we have

ρπ − ρπ′ =
∑
s∈S

µπ
′
(s)
(
Qπ(s, π(s))−Qπ(s, π′(s))

)
≥ µπ′(s′)

(
Qπ(s′, a′)−Qπ(s′, π(s′))

)
> 0

We again used the fact that MDP is ergodic to say µπ′(s′) > 0.

Proof of Lemma 1 We should show that policy π is ε-robust optimal iff we have
ρπ ≥ ρπ{s;a} + ε for every state s and action a 6= π(s).

Proof. The necessity of the condition follows directly from the definition of ε-robust policies.
Let us focus on its sufficiency.

Consider deterministic policies π, and denote the Hamming distance between two policies
π1 and π2 by DH(π1, π2), i.e., DH(π1, π2) =

∑
s∈S 1 [π1(s) 6= π2(s)] where 1 [.] denotes the

indicator function. Assume that the condition of the lemma holds for policy π∗, i.e., that
ρπ
∗ ≥ ρπ1 + ε for all π1 s.t. DH(π1, π

∗) = 1.
Lemma 5 implies that π∗ is uniquely optimal. Now, consider policy πk s.t. DH(πk, π

∗) =
k > 1. Since π∗ is (uniquely) optimal and the MDP is ergodic (µπ∗(s) > 0), we have that

ρπ
∗ − ρπk =

∑
s∈S

µπ
∗
(s) · [Qπk(s, π∗(s))−Qπk(s, πk(s))] > 0,

which implies that there exists sk ∈ S s.t. [Qπk(sk, π
∗(sk))−Qπk(sk, πk(sk))] > 0. Define

policy πk−1 as

πk−1(s) =

{
π∗(s) if s = sk

πk(s) otherwise
.

We have that

ρπk−1 = ρπk +
∑
s∈S

µπk−1(s) · [Qπk(s, πk−1(s))−Qπk(s, πk(s))]

= ρπk + µπk−1(sk) · [Qπk(sk, π
∗(sk))−Qπk(sk, πk(sk))] ≥ ρπk .

Therefore, by induction, we know that there exists a policy π1 such that ρπk ≤ ρπ1 and
DH(π1, π

∗) = 1. Utilizing our initial assumption, we obtain that ρπ∗ ≥ ρπ + ε for all π 6= π∗,
which proves that π∗ is ε-robust optimal if the condition of the lemma holds.

30

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Appendix E. Proofs for Offline Attacks: Proof of Theorem 1

We break the proof of Theorem 1 into two parts: In Appendix E.1, we prove the lower bound
in the theorem, and in Appendix E.2 we prove the upper bound. In Appendix E.3, we discuss
the choice of δ in our optimization problems.

E.1 Proofs for the Lower Bound

To prove the lower bound in Theorem 1, we will use a proof technique that is similar to the
one presented in (Ma et al., 2019), but adapted to our setting.

First, let us define operator F as

F (Q,R, ρ, P, π, γ)(s, a) = R(s, a)− ρ+ γ
∑
s′∈S

P (s, a, s′)V π(s′), (13)

or in vector notation

F (Q,R, ρ, P, π, γ) = R− ρ · 1 + γP · V π,

where V π(s′) = Q(s′, π(s′)) (and π is a deterministic policy). Furthermore, we defined
the span of X as sp(X) = maxiX(i)−miniX(i) - as argued in (Puterman, 1994), sp is a
seminorm.

Lemma 6. The following holds:

sp(F (Q1, R, ρ, P, π, γ)− F (Q2, R, ρ, P, π, γ)) ≤ γ(1− α) · sp(Q1 −Q2),

where

α = min
s,a,s′,a′

∑
x∈S

min{P (s, a, x), P (s′, a′, x)}.

Proof. We have that

sp(F (Q1, R, ρ, P, π, γ)− F (Q2, R, ρ, P, π, γ)) = γ · sp(P · (V π
1 − V π

2)).

Following the proof of Proposition 6.6.1 in (Puterman, 1994), we obtain that for b(x, s, a, s′, a′) =
min{P (s, a, x), P (s′, a′, x)}∑

x∈S
P (s, a, x) · (V π

1 (x)− V π
2 (x))−

∑
x′∈S

P (s′, a′, x) · (V π
1 (x)− V π

2 (x))

=
∑
x∈S

(P (s, a, x)− b(x, s, a, s′, a′)) · (V π
1 (x)− V π

2 (x))

−
∑
x∈S

(P (s′, a′, x)− b(x, s, a, s′, a′))) · (V π
1 (x)− V π

2 (x))

≤
∑
x∈S

(P (s, a, x)− b(x, s, a, s′, a′)) ·max
x′

(V π
1 (x′)− V π

2 (x′))

−
∑
x∈S

(P (s′, a′, x)− b(x, s, a, s′, a′))) ·min
x′

(V π
1 (x′)− V π

2 (x′))

31

Rakhsha, Radanovic, Devidze, Zhu, and Singla

= (1−
∑
x∈S

b(x, s, a, s′, a′)) · sp(V π
1 − V π

2) ≤ (1− α) · sp(V π
1 − V π

2)

Therefore

sp(F (Q1, R, ρ, P, π, γ)− F (Q2, R, ρ, P, π, γ)) = γ · sp(P · (V π
1 − V π

2)) ≤ γ(1− α) · sp(V π
1 − V π

2).

Now, notice that for smax = arg maxs[V
π
1 (s)− V π

2 (s)] and smin = arg mins[V
π
1 (s)− V π

2 (s)]
we have that

V π
1 (smax)− V π

2 (smax) = Q1(smax, π(smax))−Q2(smax, π(smax)) ≤ max
s,a

[Q1(s, a)−Q2(s, a)]

V π
1 (smin)− V π

2 (smin) = Q1(smin, π(smin))−Q2(smin, π(smin)) ≥ min
s,a

[Q1(s, a)−Q2(s, a)]

Therefore sp(V π
1 − V π

2) ≤ sp(Q1 −Q2), which implies that

sp(F (Q1, R, ρ, P, π, γ)− F (Q2, R, ρ, P, π, γ)) ≤ γ(1− α) · sp(Q1 −Q2)

To obtain the statement of the theorem, we will need to relate sp(Q1 −Q2) to difference
between R1, P1 and R2, P2. The following lemma provides this relation.

Lemma 7. Let Qπ1 and V π
1 denote Q and V values of policy π in MDP M1 = (S,A, R1, P1, γ)

and Qπ2 denote Q values of policy π in MDP M2 = (S,A, R2, P2, γ). The following holds:

‖R1 −R2‖∞ + γ · ‖P1 − P2‖∞ · ‖V
π
1 ‖∞ ≥

1− γ + γ · α2

2
· sp(Qπ1 −Qπ2).

where

α2 = min
s,a,s′,a′

∑
x∈S

min{P2(s, a, x), P2(s
′, a′, x)}.

Proof. Notice that Qπ1 and Qπ2 satisfy

Qπ1 (s, a) = F (Qπ1 , R1, ρ
π
1 , P1, π, γ)

Qπ2 (s, a) = F (Qπ2 , R2, ρ
π
2 , P2, π, γ),

where ρπ1 and ρπ2 respectively denote the average rewards of policy π in M1 and M2. We
obtain

sp(Qπ1 −Qπ2) = sp(F (Qπ1 , R1, ρ
π
1 , P1, π, γ)− F (Qπ2 , R2, ρ

π
2 , P2, π, γ))

= sp(F (Qπ1 , R1, ρ
π
1 , P1, π, γ)− F (Qπ1 , R2, ρ

π
2 , P1, π, γ)

+ F (Qπ1 , R2, ρ
π
2 , P1, π, γ)− F (Qπ1 , R2, ρ

π
2 , P2, π, γ)

+ F (Qπ1 , R2, ρ
π
2 , P2, π, γ)− F (Qπ2 , R2, ρ

π
2 , P2, π, γ))

≤ sp(F (Qπ1 , R1, ρ
π
1 , P1, π, γ)− F (Qπ1 , R2, ρ

π
2 , P1, π, γ))

+ sp(F (Qπ1 , R2, ρ
π
2 , P1, π, γ)− F (Qπ1 , R2, ρ

π
2 , P2, π, γ))

+ sp(F (Qπ1 , R2, ρ
π
2 , P2, π, γ)− F (Qπ2 , R2, ρ

π
2 , P2, π, γ))

32

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

≤ sp(R1 − ρπ1 · 1−R2 + ρπ2 · 1) + γ · sp((P1 − P2) · V π
1) + γ(1− α2) · sp(Qπ1 −Qπ2)

where the last inequality is due to Lemma 6 (i.e., sp(F (Qπ1 , R2, ρ
π
2 , P2, π, γ)−F (Qπ2 , R2, ρ

π
2 , P2, π, γ)) ≤

γ(1− α2) · sp(Qπ1 −Qπ2)). Due to the properties of sp, we have

sp(R1 − ρπ1 · 1−R2 + ρπ2 · 1) = sp(R1 −R2) ≤ 2 · ‖R1 −R2‖∞ .

For the second term, we have

sp((P1 − P2) · V π
1) ≤ 2 · ‖(P1 − P2) · V π

1 ‖∞
= 2 ·max

s,a
|
∑
s′

(P1(s, a, s
′)− P2(s, a, s

′)) · V π
1 (s′)|.

To bound the right-hand side in the above equation, we note that∑
s′

(P1(s, a, s
′)− P2(s, a, s

′)) · V π
1 (s′)

≤
(∑
s′:P1(s,a,s′)≥P2(s,a,s′)

(P1(s, a, s
′)− P2(s, a, s

′))

)
·max

s′
V π
1 (s′)

+

(∑
s′:P1(s,a,s′)<P2(s,a,s′)

(P1(s, a, s
′)− P2(s, a, s

′))

)
·min

s′
V π
1 (s′)

=
1

2

(∑
s′

|P1(s, a, s
′)− P2(s, a, s

′)|
)
· sp(V π

1),

and similarly ∑
s′

(P1(s, a, s
′)− P2(s, a, s

′)) · V π
1 (s′)

≥
(∑
s′:P1(s,a,s′)≥P2(s,a,s′)

(P1(s, a, s
′)− P2(s, a, s

′))

)
·min

s′
V π
1 (s′)

+

(∑
s′:P1(s,a,s′)<P2(s,a,s′)

(P1(s, a, s
′)− P2(s, a, s

′))

)
·max

s′
V π
1 (s′)

= −1

2

(∑
s′

|P1(s, a, s
′)− P2(s, a, s

′)|
)
· sp(V π

1).

The above two bounds give us the following:

|
∑
s′

(P1(s, a, s
′)− P2(s, a, s

′)) · V π
1 (s′)| ≤ 1

2

(∑
s′

|P1(s, a, s
′)− P2(s, a, s

′)|
)
· sp(V π

1).

Now we can bound the second term as

sp((P1 − P2) · V π
1) ≤ 2 · ‖(P1 − P2) · V π

1 ‖∞
= 2 ·max

s,a
|
∑
s′

(P1(s, a, s
′)− P2(s, a, s

′)) · V π
1 (s′)|

33

Rakhsha, Radanovic, Devidze, Zhu, and Singla

= sp(V π
1) ·max

s,a

∑
s′

|P1(s, a, s
′)− P2(s, a, s

′)|

= sp(V π
1) · ‖P1 − P2‖∞ ,

where ‖P1 − P2‖∞ = maxs,a
∑

s′ |P1(s, a, s
′) − P2(s, a, s

′)|. Putting this together with the
upper bound on sp(Qπ1 −Qπ2), we obtain

2 · ‖R1 −R2‖∞ + γ · ‖P1 − P2‖∞ · sp(V
π
1) ≥ (1− γ + γα2) · sp(Qπ1 −Qπ2),

which proves the claim.

We are now ready to prove the lower bound in Theorem 1. We can write

Cost(M̂,M) =

[∑
s,a

(
Cr ·

∣∣R̂(s, a)−R(s, a)
∣∣+ Cp ·

∑
s′

∣∣P̂ (s, a, s′)− P (s, a, s′)
∣∣)p]1/p

≥max
s,a

(
Cr ·

∣∣R̂(s, a)−R(s, a)
∣∣+ Cp ·

∑
s′

∣∣P̂ (s, a, s′)− P (s, a, s′)
∣∣)

≥max
(
Cr

∥∥∥R̂−R∥∥∥
∞
, Cp

∥∥∥P̂ − P∥∥∥
∞

)
≥ 2Cr

−1

2Cr
−1 + γCp

−1sp(V
π†)

Cr

∥∥∥R̂−R∥∥∥
∞

+
γCp

−1sp(V
π†)

2Cr
−1 + γCp

−1sp(V
π†)

Cp

∥∥∥P̂ − P∥∥∥
∞

=
1

2Cr
−1 + γCp

−1sp(V
π†)

(
2
∥∥∥R̂−R∥∥∥

∞
+ γsp(V

π†)
∥∥∥P̂ − P∥∥∥

∞

)
≥ 1− γ + γα̂

2Cr
−1 + γCp

−1sp(V
π†)

sp(Q
π† − Q̂π†),

where ‖P1 − P2‖∞ = maxs,a
∑

s′ |P1(s, a, s′)− P2(s, a, s′)|, and we used Lemma 7 in the last
inequality. Factor α̂ can be bounded as follows:

α̂ = min
s,a,s′,a′

∑
x

min{P̂ (s, a, x), P̂ (s′, a′, x)}

≥ min
s,a,s′,a′

∑
x

min{δ · P (s, a, x), δ · P (s′, a′, x)}

= δ · min
s,a,s′,a′

∑
x

min{P (s, a, x), ·P (s′, a′, x)}

= δ · α.

It only remains to bound sp(Qπ† − Q̂π†). We show that

sp(Q
π† − Q̂π†) ≥

∥∥χπ†0 ∥∥∞ .
Let s′ and a′ be a state action pair that satisfy: s′, a′ = arg maxs,a χ

π†
0 (s, a). Let’s

consider the case when χπ†0 (s′, a′) > 0. We have

sp(Q
π† − Q̂π†) = sp(Q̂π† −Qπ†) = max

s,a
[Q̂π† −Qπ†]−min

s,a
[Q̂π† −Qπ†]

34

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

≥ Q̂π†(s′, π†(s′))−Q
π†(s′, π†(s

′))− (Q̂π†(s′, a′)−Qπ†(s′, a′))

= (Q̂π†(s′, π†(s
′))− Q̂π†(s′, a′)) + (Q

π†(s′, a′)−Qπ†(s′, π†(s′))

≥ ε

µ̂π†{s
′;a′}(s′)

+ (Q
π†(s′, a′)−Qπ†(s′, π†(s′))

≥ ε+
ρπ†{s

′;a′} − ρπ†
µπ†{s

′;a′}(s′)
> χ

π†
0 (s′, a′),

where we used the fact that Q̂π†(s′, π†(s′)) ≥ Q̂π†(s′, a′) + ε

µ̂
π†{s′;a′}(s′)

(because π† is ε-robust

optimal in the modified MDP) and Lemma 4 (Corollary 1) to relate Q values to scores ρ.
When χπ†0 (s′, a′) = 0, we know that sp(Qπ†− Q̂π†) ≥ 0 due to the properties of sp. Therefore,
sp(Q

π† − Q̂π†) = sp(Q̂π† −Qπ†) ≥
∥∥χπ†0 (s′, a′)

∥∥
∞. Putting this together with the previous

expression, we obtain the claim:

Cost(M̂,M) ≥ 1− γ + γδα

2Cr
−1 + γCp

−1sp(V
π†)

∥∥χπ†0 ∥∥∞ .
E.2 Proofs for the Upper Bound

Here, we prove the upper bound in Theorem 1. We first prove a lemma that we need for our
proof.

Lemma 8. Let π be a deterministic policy and P be a transition kernel such that P (s, π(s), s′) =
P (s, π(s), s′) for every s, s′. For any s, a, If µπ{s;a} is the state distribution of π{s; a} under
P and initial state distribution d0, we have

µπ{s;a}(s) =
1− (1− γ)

∑
s′ d0(s

′)T
π
(s′, s)

1 + γ
∑

s′ P (s, a, s′)T
π
(s′, s)

≥ 1− (1− γ) ·Dπ

1 + γ ·Dπ .

Proof. The inequality is trivial due to the fact that by definition Dπ ≥ T
π
(s, s′) for every

s, s′. Thus, it suffices to prove the equality.
When γ = 1, we have 1

µ
π†{s;a}(s)

= E
[
Lπ†{s;a}(s, s)

]
(see Theorem 1.21 in (Durrett and

Durrett, 1999)), where Lπ(s, s′) is the number of steps to reach s′ starting from s in the
induced Markov chain by π in P . Note that as γ = 1, the discounted reach times on P are
T π(s, s′) = E [Lπ(s, s′)] for s 6= s′. We have

1

µπ†{s;a}(s)
= E

[
Lπ†{s;a}(s, s)

]
= 1 +

∑
s′

P (s, a, s′) · T π†{s;a}(s′, s)

= 1 +
∑
s′

P (s, a, s′) · T π†(s′, s)

= 1 +
∑
s′

P (s, a, s′) · T π†(s′, s).

Note that we have used the fact that transitions of π† are not changed, and therefore
T
π† = T π† .

35

Rakhsha, Radanovic, Devidze, Zhu, and Singla

Now consider the case γ < 1. For i ≥ 1, let ti(s) be the random variable denoting the
step number when state s is visited for the i-th time. More formally

t1(s) = min{j ≥ 0 : sj = s},
ti(s) = min{j > ti−1(s) : sj = s}.

Using the definition of µπ{s;a}(s) and independence of ti(s)− t1(s) and t1(s), we obtain

µπ{s;a}(s) = (1− γ)
∞∑
t=0

γtP [st = s|s0 ∼ d0, π{s; a}]

= (1− γ)E

[∞∑
i=1

γti(s)|s0 ∼ d0, π{s; a}

]

= (1− γ)E

[
γt1(s)

(
1 +

∞∑
i=2

γti(s)−t1(s)
)
|s0 ∼ d0, π{s; a}

]

= (1− γ)E
[
γt1(s)|s0 ∼ d0, π{s; a}

]
E

[(
1 +

∞∑
i=2

γti(s)−t1(s)
)
|s0 ∼ d0, π{s; a}

]

= (1− γ)E
[
γt1(s)|s0 ∼ d0, π{s; a}

](
1 + γE

[∞∑
i=1

γti(s)|s0 ∼ P (s, a, .), π{s; a}

])

= (1− γ)E
[
γt1(s)|s0 ∼ d0, π{s; a}

](
1 +

γµ
π{s;a}
P (s,a,.)(s)

1− γ

)
= E

[
γt1(s)|s0 ∼ d0, π{s; a}

] (
1− γ + γµ

π{s;a}
P (s,a,.)(s)

)
.

Here, µπ{s;a}P (s,a,.) is the state distribution of π{s; a} under P when the initial state distribution
is P (s, a, .) instead of d0. For an arbitrary policy π′ define Xπ′(s, s′) as

Xπ′(s, s′) = E
[
γt1(s

′)|s0 = s, π′
]
.

Using this, we can write the last equation as

µπ{s;a}(s) =

(∑
s′

d0(s
′)Xπ{s;a}(s′, s)

)(
1− γ + γµ

π{s;a}
P (s,a,.)(s)

)
. (14)

Similarly

µ
π{s;a}
P (s,a,.)(s) =

(∑
s′

P (s, a, s′)Xπ{s;a}(s′, s)

)(
1− γ + γµ

π{s;a}
P (s,a,.)(s)

)

⇒µπ{s;a}P (s,a,.)(s) =

(1− γ)

(∑
s′ P (s, a, s′)Xπ{s;a}(s′, s)

)
1− γ

∑
s′ P (s, a, s′)Xπ{s;a}(s′, s)

.

36

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Plugging this into (14) we get

µπ{s;a}(s) =

(∑
s′

d0(s
′)Xπ{s;a}(s′, s)

)
· 1− γ

1− γ
∑

s′ P (s, a, s′)Xπ{s;a}(s′, s)
.

Finally, note that Xπ{s;a}(s′, s) = Xπ(s′, s) as π{s; a} and π only differ in s which is does not
affect the time to visit s for the first time. Moreover, we have Xπ(s′, s) = 1−T π(s′, s)(1− γ)
because for s 6= s′ one can write

Xπ(s′, s) = E
[
γt1(s

′)|s0 = s, π
]

= E
[
γL

π
(s,s′)

]
= E

[
1− 1− γL

π
(s,s′)

1− γ
· (1− γ)

]
= 1− T π(s′, s)(1− γ).

and for s′ = s, Xπ(s, s) = 1 and T π(s, s) = 0. We get

µπ{s;a}(s) =
(1− γ)

∑
s′ d0(s

′)Xπ(s′, s)

1− γ
∑

s′ P (s, a, s′)Xπ(s′, s)

=
(1− γ)

∑
s′ d0(s

′)(1− (1− γ)T
π
(s′, s))

1− γ
∑

s′ P (s, a, s′)(1− (1− γ)T
π
(s′, s))

=
(1− γ)(1−

∑
s′ d0(s

′)(1− γ)T
π
(s′, s))

1− γ(1−
∑

s′ P (s, a, s′)(1− γ)T
π
(s′, s))

=
1− (1− γ)

∑
s′ d0(s

′)T
π
(s′, s)

1 + γ(
∑

s′ P (s, a, s′)T
π
(s′, s))

,

which completes the proof.

Now we can prove the upper bound in Theorem 1. First, note that k(s, a) < |S| due
to the condition γCr(V

π†(sk(s,a)) − V
π†(s|S|)) > 2Cp and Cp ≥ 0. Consider the following

solution:

P̂ (s, a, si) =

δP (s, a, si) if a 6= π†(s) and i ≤ k(s, a)

P (s, a, si) + 1
2Gk(s,a)(s, a) if a 6= π†(s) and i = |S|

P (s, a, si) otherwise
, (15)

R̂(s, a) =

{
R(s, a)− χπ†

β(s,a)
(s, a) + F k(s,a)(s, a) if a 6= π†(s)

R(s, a) if a = π†(s)
. (16)

Let Q̂ and V̂ denote Q-values and V -values in M̂ . From Lemma 1 and Corollary 1 it
suffices to prove for state s and action a 6= π†(s)

V̂ π†(s)− Q̂π†(s, a) ≥ ε

µ̂π†{s;a}(s)
.

37

Rakhsha, Radanovic, Devidze, Zhu, and Singla

Note that rewards and transitions used by the target policy are not changed so we have
V̂ π† = V

π† and ρ̂π† = ρπ† . One can write

Q̂π†(s, a) =R̂(s, a)− ρπ† + γ

|S|∑
i=1

P̂ (s, a, si)V
π†(si)

=R(s, a)− χπ†
β(s,a)

(s, a) + F k(s,a)(s, a)− ρπ† + γ

|S|∑
i=1

P (s, a, si)V
π†(si)

+
γ

2
Gk(s,a)(s, a) · V π†(s|S|)− γ · (1− δ)

k(s,a)∑
i=1

P (s, a, si)V
π†(si)

=Q
π†(s, a)− χπ†

β(s,a)
(s, a) + γ

k(s,a)∑
i=1

(1− δ)P (s, a, si)(V
π†(si)− V

π†(s|S|))

+ γ ·
(k(s,a)∑

i=1

(1− δ)P (s, a, si)
)
· V π†(s|S|)− γ · (1− δ)

k(s,a)∑
i=1

P (s, a, si)V
π†(si)

=Q
π†(s, a)− χπ†

β(s,a)
(s, a)

≤Qπ†(s, a)− ρπ{s;a} − ρπ + β(s, a)

µπ{s;a}(s)

=V
π†(s)− β(s, a)

µπ{s;a}(s)
,

where in the last equality we used Corollary 1. By definition

β(s, a) = ε · µπ†{s;a}(s) · 1 + γ ·Dπ†

1− (1− γ) ·Dπ† .

Thus, from Lemma 8 we can see that

β(s, a)

µπ{s;a}(s)
≥ ε

µ̂π{s;a}(s)
.

Combining this with the last expression, we obtain

V
π†(s)− Q̂π†(s, a) ≥ ε

µ̂π†{s;a}(s)
.

Thus, this is a solution for the problem. It only remains to find its cost. We can write

Cost(M̂,M) =

(∑
s,a

(
Cr ·

∣∣R̂(s, a)−R(s, a)
∣∣+ Cp ·

∑
s′

∣∣P̂ (s, a, s′)− P (s, a, s′)
∣∣)p)1/p

≤
(∑

s,a

(
Cr ·

(
χ
π†

β(s,a)
(s, a)− F k(s,a)(s, a)

)
+ Cp ·

(k(s,a)∑
i=1

(1− δ)P (s, a, si) +
1

2
Gk(s,a)(s, a)

))p)1/p

38

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

=

(∑
s,a

(
Cr ·

(
χ
π†

β(s,a)
(s, a)− F k(s,a)(s, a)

)
+ Cp ·Gk(s,a)(s, a)

)p)1/p

=
∥∥∥Cp ·Gk + Cr · (χ

π†

β
− F k)

∥∥∥
p
,

which concludes the proof.

E.3 Discussion on Choosing δ

While δ can be set to small values, making the corresponding constraint in (P1) a relatively
weak condition, it is important to note that its value controls parameters of MDP M̂ that are
important for practical considerations in the offline setting. Moreover, since δ is a parameter in
the optimization problems (P2) (and (P2’)), its value is also important for the online setting.

In the case of attacks on a learning agent, our results have dependency on the agent’s
regret or number of suboptimal steps, which in turn depend on the properties of MDP M̂ .
For example, if the agent adopts UCRL as its learning procedure, its regret will depend
on the diameter of M̂ . Hence, δ should be adjusted based on time horizon T , so that the
parameters of MDP M̂ relevant for the agent’s regret do not outweigh time horizon T .

In the case of attacks on a planning agent with average reward criteria, setting δ to small
values could result in a solution M̂ that has a large mixing time, in which case the score
ρ might not approximate well the average of obtained rewards in a finite horizon (e.g., see
(Even-Dar et al., 2005)). This means that the choice of δ should account for the finiteness of
time horizon in practice.

We leave a more detailed analysis that includes these considerations for future work.

Appendix F. Proofs For Online Attacks (Section 5)

This section contains proof of our results for Lemma 3, Theorem 2, and Theorem 3.

F.1 Proof of Lemma 3

This lemma is based on the simple observation: when a learner draws its experience from
an MDP M that has π† as its ε-robust optimal policy, instantiating SubOpt(T,M, ε′) with
ε′ = ε will give us the number of times the learner deviates from π†. In particular, we need
to show that AvgMiss(T) = 1

T SubOpt(T,M, ε) when π† is an ε-robust optimal policy. By
using the definition of SubOpt(T,M, ε′) with ε′ = ε, we obtain:

SubOpt(T,M, ε) =
T−1∑
t=0

1
[
at /∈ {π(st) | ρπ ≥ ρπ

∗ − ε}
]
.

Since π† is ε-robust optimal in M , the only π satisfying ρπ ≥ ρπ∗ − ε is π† itself. This means
that we have

SubOpt(T,M, ε) =
T−1∑
t=0

1 [at 6= π†(st)]

= T ·AvgMiss(T),

which proves the claim.

39

Rakhsha, Radanovic, Devidze, Zhu, and Singla

F.2 Proof of Theorem 2: Average Reward Criteria, γ = 1

We need to prove bounds on the expected cost and average mismatches of the online attack
against a regret-minimization learner.

Since M̂ = (S,A, R̂, P) is a solution to the optimization problem (P2), π† is ε-robust
optimal in M̂ . Notice that the learner receives feedback from the MDP M̂ . Using Lemma 2
we can obtain the following bound on the expected average mismatches:

E [AvgMiss(T)] ≤ µ̂max

ε · T
·
(
E
[
Regret(T, M̂)

]
+ 2

∥∥∥V̂ π†
∥∥∥
∞

)
.

Note that V̂ π† = V
π† and we could also substitute V̂ π† with V π† in the bound.

Next, we analyze the expected attack cost. Since R(s, a) = R̂(s, a), P (s, a, s′) = P̂ (s, a, s′)
for s, s′, a = πT (s), we have

E

[
T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]

=E

[
T−1∑
t=0

1 [at 6= π(st)]

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]

≤
(
Cost(M̂,M,Cr, Cp,∞)

)p
· T · E [AvgMiss(T)]

≤
(
Cost(M̂,M,Cr, Cp,∞)

)p
· µ̂max

ε
·
(
E
[
Regret(T, M̂)

]
+ 2

∥∥∥V̂ π†
∥∥∥
∞

)
.

Since p ≥ 1, the function f(x) = x1/p is concave. By Jensen’s inequality, this means that
E [f(X)] ≤ f(E [X]), where X is a random variable. We can write E [AvgCost(T)] to be

=
1

T
E

(T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p)1/p

≤ 1

T
E

[
T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]1/p

≤ Cost(M̂,M,Cr, Cp,∞)

T
·
(
µ̂max

ε
·
(
E
[
Regret(T, M̂)

]
+ 2

∥∥∥V̂ π†
∥∥∥
∞

))1/p

.

F.3 Proof of Theorem 3: Discounted Reward Criteria, γ < 1

We need to prove bounds on the expected cost and average mismatches of the online attack
against a learner with a bounded number of suboptimal steps.

Since M̂ = (S,A, R̂, P) is a solution to the optimization problem (P2), π† is ε-robust
optimal in M̂ . Notice that the learner receives feedback from the MDP M̂ . Using Lemma 3
we can obtain the following expected average mismatches:

E [AvgMiss(T)] =
1

T
· E
[
SubOpt(T, M̂, ε)

]
.

40

Policy Teaching in Reinforcement Learning via Environment Poisoning Attacks

Next, we analyze the expected attack cost. Since R(s, a) = R̂(s, a), P (s, a, s′) = P̂ (s, a, s′)
for s, s′, a = πT (s), we have

E

[
T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]

=E

[
T−1∑
t=0

1 [at 6= π(st)]

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]

≤
(
Cost(M̂,M,Cr, Cp,∞)

)p
· T · E [AvgMiss(T)]

≤
(
Cost(M̂,M,Cr, Cp,∞)

)p
· E
[
SubOpt(T, M̂, ε)

]
.

Since p ≥ 1, the function f(x) = x1/p is concave. By Jensen’s inequality, this means that
E [f(X)] ≤ f(E [X]), where X is a random variable. We can write E [AvgCost(T)] to be

=
1

T
E

(T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p)1/p

≤ 1

T
E

[
T−1∑
t=0

(
Cr ·

∣∣R̂t(st, at)−R(st, at)
∣∣+ Cp ·

∑
s′

∣∣P̂t(st, at, s′)− P (st, at, s
′)
∣∣)p]1/p

≤ Cost(M̂,M,Cr, Cp,∞)

T
·
(
E
[
SubOpt(T, M̂, ε)

])1/p
.

41

	Introduction
	Overview of our Results and Contributions
	Additional Related Work

	Environment and RL Agent
	Environment, Policy, and Optimality Criteria
	RL Agent

	Attack Models and Problem Formulation
	Attack Against an Offline Planning Agent
	Attack Against an Online Learning Agent

	Attacks in Offline Setting
	Offline Attacks: Key Ideas and Attack Problem
	Offline Attacks: Theoretical Analysis
	Offline Attacks: Efficiency of Solving the Problem

	Attacks in Online Setting
	Online Attacks: Key Ideas and Attack Problem
	Online Attacks: Theoretical Analysis
	Online Attacks: Efficiency of Solving the Problem

	Numerical Simulations
	Environments
	Attacks in the Offline Setting: Setup and Results
	Attacks in the Online Setting: Setup and Results

	Conclusion and Future Work
	List of Appendices
	Examples of Online Learning Agents
	Numerical Simulations: Implementation Details (Section 6)
	Proofs for Offline Attacks: Lemma 1 (Section 4)
	Proofs for Offline Attacks: Proof of Theorem 1
	Proofs for the Lower Bound
	Proofs for the Upper Bound
	Discussion on Choosing

	Proofs For Online Attacks (Section 5)
	Proof of Lemma 3
	Proof of Theorem 2: Average Reward Criteria, =1
	Proof of Theorem 3: Discounted Reward Criteria, <1

