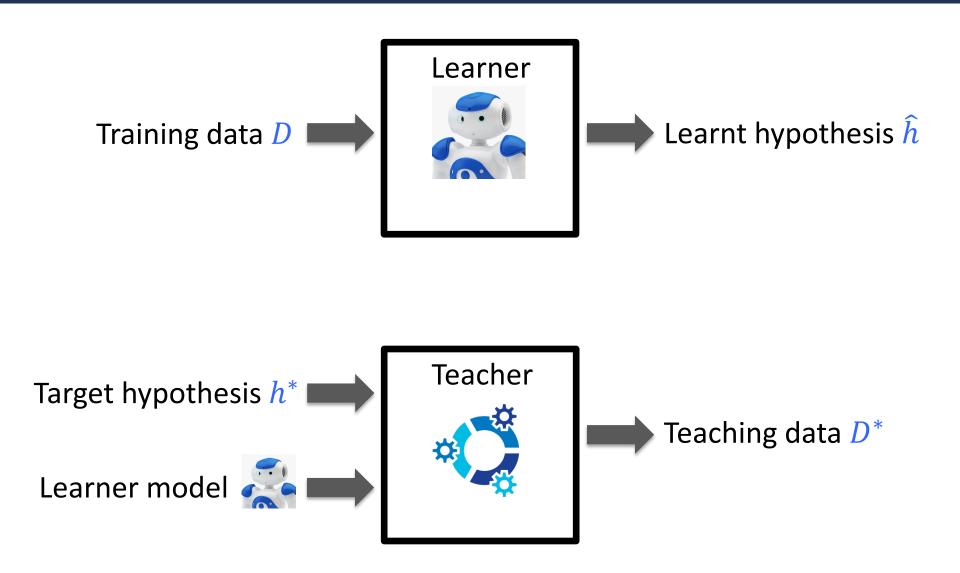
Machine Teaching

Adish Singla

CMMRS, August 2019

Machine Learning vs. Teaching



Why Machine Teaching?

edX

Adversarial settings aka training-set poisoning **Educational settings**

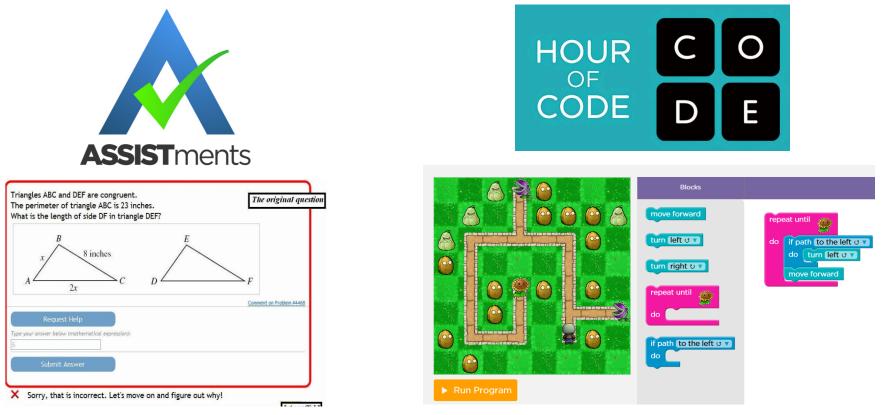
Explore Learn Record

Applications: Online Education via MOOCs

- Astronomical growth with over 100 million students
- Over 10,000 courses offered online

Key challenge: Dropout rate of over 95%

Applications: Skill Assessment and Practice



- Over 10 million problems solved per year on ASSISTments
- Over 0.8 billion hours of code by 100 million students

Key limitation: No automated or personalized curriculum of problems

Applications: Training Simulators

VIRTAMED^O WE SIMULATE REALITY

🧶 🗆 🖸

Video credits: Virtamed – Zurich, Switzerland

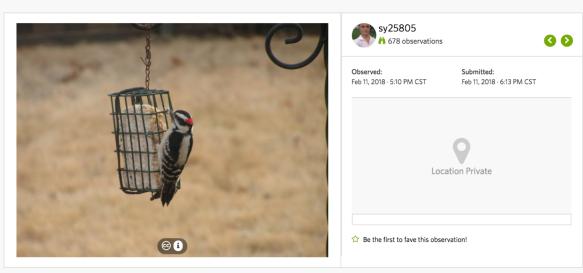
Applications: Language Learning

- Over 300+ million students
- Based on **spaced repetition** of flash cards

Can we compute **optimal personalized schedule** of repetition?

Applications: Biodiversity Monitoring

Downy Woodpecker (Picoides pubescens) Research Grade



Description

KONICA N	MINOLTA DIGITAL CAMERA		Downy Woo	dpecker (Picoide	s nubescens)	3.		
Activi	ty		Cumulative ID		.s pubescens/			
	sy25805 suggested an ID	Ø ID Withdrawn 2mo	0		2/3rds			
	Woodpeckers and Allies Order Piciformes		✓ Agra	ee ≓	Compare	O About		
	sy25805 suggested an ID	🏆 Improving 2mo 🖌 🗸	Annotation	S Annotations				
Ĭ	Downy Woodpecker		Attribute	Value	Agree	Disagree		
	Downy Woodpecker Picoides pubescens	Compare Agree	Sex	Sex Select -				
			Life Stage	Select -				

Community ID

Key challenge: Noise in the annotations

Image credits: iNaturalist

Follow -

What's this?

Applications: Biodiversity Monitoring

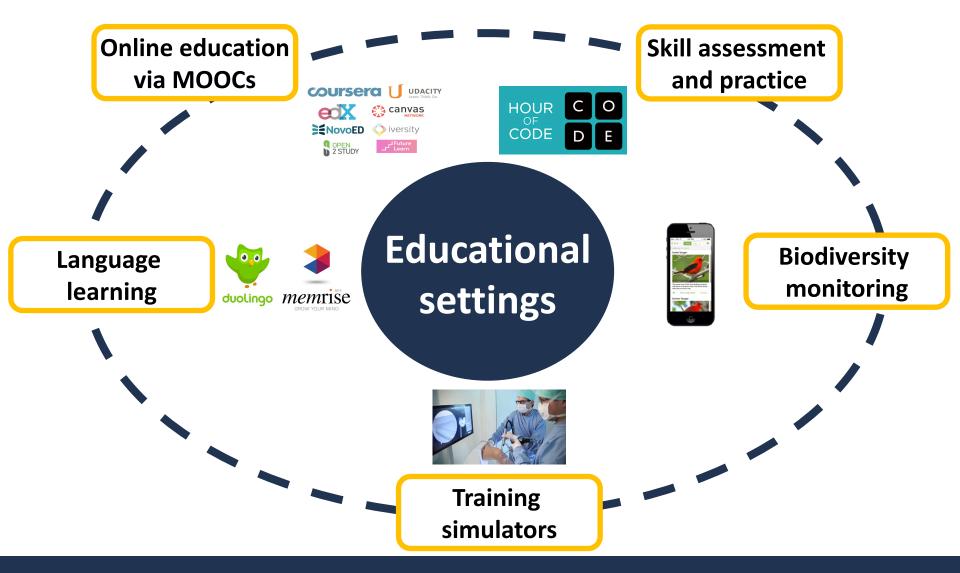
CorthoSound
How long is the antenna of the grasshopper?
Ang Short O Don't know
And Auton for recording
Hold Auton for recording</li

🗙 🎯 🖞 📶 100% 🗎 22:23

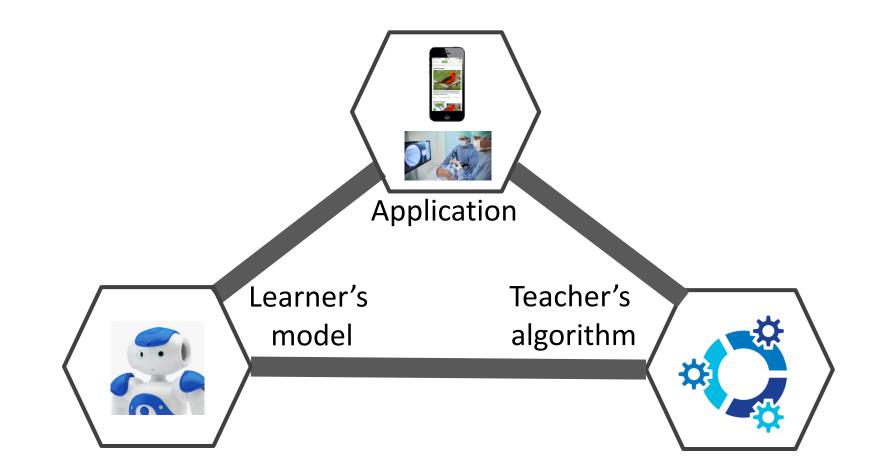
- Teaching helps increase awareness and engagement
- Labeled data is crucial for training machine learning systems

Can we **teach** participants to label more accurately?

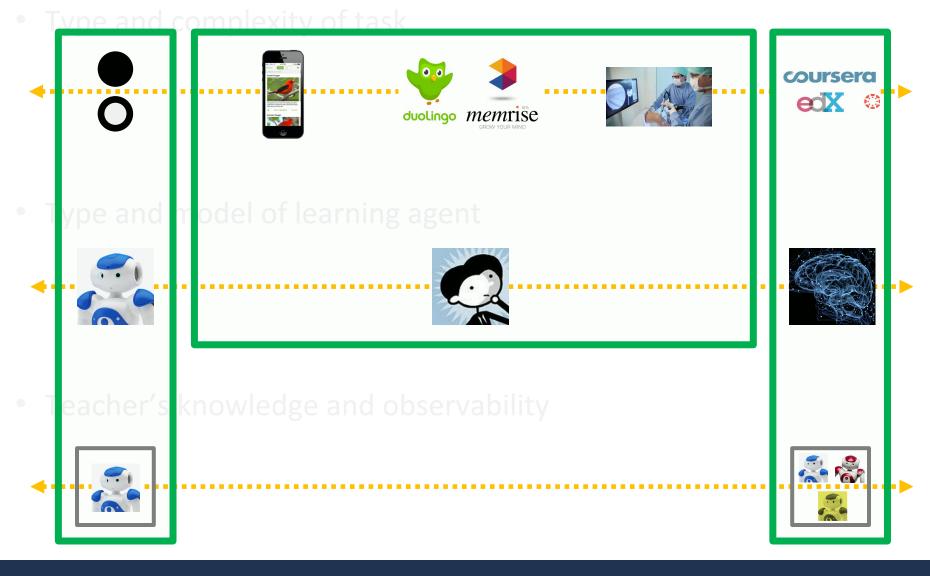
Machine Teaching: Applications



Machine Teaching: Key Components



Machine Teaching: Problem Space



Course Outline

Part 1: Different viewpoints of the problem space

- Information-theoretic models of teaching
- Cognitive models of teaching

Part 2: Designing algorithms for teaching people

- **Classification** rules for biodiversity monitoring
- Vocabulary for language learning
- **Policies** for performing sequential tasks

Machine Teaching: Problem Space



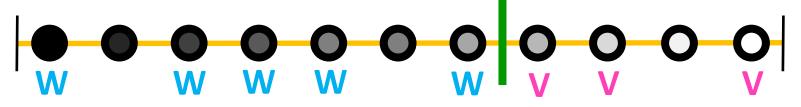
An Example: 1-D Threshold Function

- Task: Classify animal image as Weevil or Vespula
- \mathcal{X} : Set of images, each $x \in \mathcal{X}$ is associated with a contrast level

- \mathcal{H} : Set of hypotheses, each $h \in \mathcal{H}$ is a binary threshold classifier
- *h*^{*}: True classifier

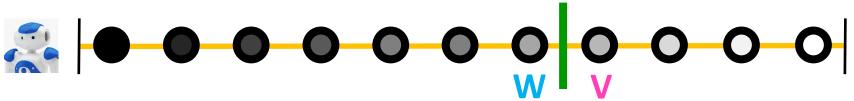
An Example: 1-D Threshold Function

• Learning setting (Passive): avg. size of D is $\Theta(n)$



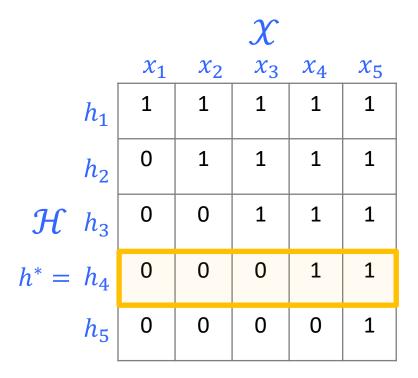
• Learning setting (Active): size of D is $\Theta(\log n)$

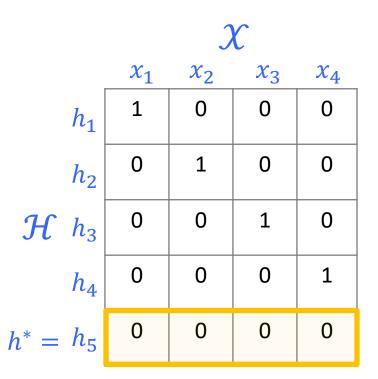
• Teaching setting: size of *D* is 2



Teaching Binary Functions

- Set of unlabeled examples ${\mathcal X}$
- Hypotheses class \mathcal{H} as a set of binary functions $h: \mathcal{X} \to \{0,1\}$
- Target hypothesis $h^* \in \mathcal{H}$



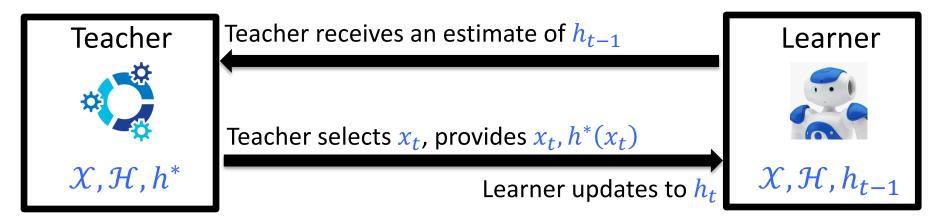


Teaching Interaction

Start

• Learner starts at $h_0 \in \mathcal{H}$

At time t



Stop

• When $h_t = h^*$

Learner Model: Version space learning

Notion of version space

- Maintain a set of eligible hypotheses
 - Start with $H_0 = \mathcal{H}$
- At time t, remove hypothesis inconsistent with x_t , $h^*(x_t)$
 - $H_t = H_{t-1} \setminus \{h \in \mathcal{H} \mid h(x_t) \neq h^*(x_t)\}$

Version space learner

- Learner starts at $h_0 \in \mathcal{H}$, $H_0 = \mathcal{H}$
- At time *t*:
 - Learner receives x_t , $h^*(x_t)$ and updates H_t
 - Learner selects a new hypothesis $h_t \in H_t$ at random

Teacher: Optimization Problem

Analysis setting

- Worst-case vs. average case
- Finite vs. infinite/continuous ${\cal H}$
- Exact vs. approximate teaching

Optimization problem

• Find smallest sequence $\overleftarrow{S} = (x_1, x_2, ...)$ to achieve desired objective

$$\vec{S}^{opt} = \underset{\vec{S}}{\operatorname{argmin}} |\vec{S}|$$
 s.t. $h_t = h^*$
equivalent to

 $H_t = \{h^*\}$

Teacher: Optimization Problem

Teaching problem is equivalent to Set Cover problem

- $\mathcal{H} \setminus \{h^*\}$ is the set of elements to remove or "cover"
- Each x covers a subset $\mathcal{H}(x) = \{h \in \mathcal{H} \mid h(x) \neq h^*(x)\}$
- Find smallest set $S = \{x_1, x_2, ...\}$ to cover $\mathcal{H} \setminus h^*$

Complexity of optimization

Theorem: Finding optimal teaching sequence \overrightarrow{S}^{opt} is NP-hard.

Teacher: Optimization Problem

Teaching problem is a Submodular Coverage problem

• Define set function $F: 2^{\mathcal{X}} \to \mathbb{R}_+$ as

 $F(S) = |\bigcup_{x \in S} \mathcal{H}(x)|$ where $S \subseteq \mathcal{X}$

• Rewrite teaching problem as

 $S^{\text{opt}} = \underset{S}{\operatorname{argmin}} |S| \quad \text{s.t.} \quad F(S) \ge |\mathcal{H}| - 1$

Submodular Coverage problem

• F(.) satisfies submodularity: A notion of diminishing returns $F(\{a\} \cup S) - F(S) \ge F(\{a\} \cup \{b\} \cup S) - F(\{b\} \cup S)$

We can optimize using a greedy algorithm with provable guarantees

Teacher: Algorithm

Iterative greedy algorithm

- Input: \mathcal{H} , \mathcal{X} , h^*
- Initialize: set S ← Ø
- While $F(S) < |\mathcal{H}| 1$:
 - Select $x \leftarrow \operatorname{argmax}_{x' \in \mathcal{X}} F(x' \cup S) F(S)$
 - Provide x, $h^*(x)$ to learner
 - Update $S \leftarrow S \cup \{x\}$

Approximation guarantees

Theorem: Let S^{gr} be the set provided by the algorithm and $\overrightarrow{S}^{\text{opt}}$ denote the optimal teaching sequence. Then, $|S^{\text{gr}}| \leq |\overrightarrow{S}^{\text{opt}}| \cdot \log(|\mathcal{H}|)$.

Complexity Measures: TD

Notion of teaching complexity: Teaching dimension TD

- Introduced by [Goldman, Kearns '95]
- Analysis setting
 - randomized version space learner
 - worst-case analysis
 - finite size hypothesis class
 - exact teaching

Formal definition of TD

- Length of optimal teaching sequence for h^* is $|TS(h^*; \mathcal{H}, \mathcal{X})|$
- Teaching dimension is defined as

$$TD(\mathcal{H}, \mathcal{X}) := \max_{h^* \in \mathcal{H}} |TS(h^*; \mathcal{H}, \mathcal{X})|$$

Complexity Measures: TD

Examples for computing TD

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	x_5	ľ	TS(h*))		<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	ľ.	TS(h *)
h_1	1	1	1	1	1		1		h_1	1	0	0	0		1
h_2	0	1	1	1	1		2		h_2	0	1	0	0		1
h_3	0	0	1	1	1		2		h_3	0	0	1	0		1
h_4	0	0	0	1	1		2		h_4	0	0	0	1		1
h_5	0	0	0	0	1		2		h_5	0	0	0	0		4

 $TD(\mathcal{H}, \mathcal{X}) = 2$

 $TD(\mathcal{H}, \mathcal{X}) = 4$

Complexity Measures: TD vs. VCD

Notion of learning complexity: VCD

- Introduced by [Vapnik, Chervonenkis '71]
- Sample complexity bounds for learning grow as $\Theta(VCD(\mathcal{H}, \mathcal{X}))$

A fundamental question: TD vs. VCD?

- $TD(\mathcal{H}, \mathcal{X})$ is $O(VCD(\mathcal{H}, \mathcal{X}))$?
- There exists problems with
 - $TD(\mathcal{H}, \mathcal{X}) \ll O(VCD(\mathcal{H}, \mathcal{X}))$
 - $TD(\mathcal{H}, \mathcal{X}) \gg O(VCD(\mathcal{H}, \mathcal{X}))$

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
h_1	1	0	0	0
h_2	0	1	0	0
h_3	0	0	1	0
h_4	0	0	0	1
h_5	0	0	0	0

 $TD(\mathcal{H}, \mathcal{X}) = 4$ $VCD(\mathcal{H}, \mathcal{X}) = 1$

Improved Notions of TD: RTD

Teaching an "adversarial" learner: Classic TD

Simple classes can be difficult to teach

Teaching a "cooperative" learner: Recursive TD (RTD)

- Introduced by [Zilles et al. @ COLT'08]
- $RTD(\mathcal{H}, \mathcal{X})$ is $O(VCD(\mathcal{H}, \mathcal{X}))$? [Simon, Zilles @ COLT'15]
- An active area of research
 - $O(d \ 2^d \log \log |\mathcal{H}|)$ [Moran et al. @ FOCS'15]
 - $O(d 2^d)$ [Chen et al. @ NIPS' 16]
 - O(d²) [Hu et al. @ COLT' 17]

where d denotes $VCD(\mathcal{H}, \mathcal{X})$

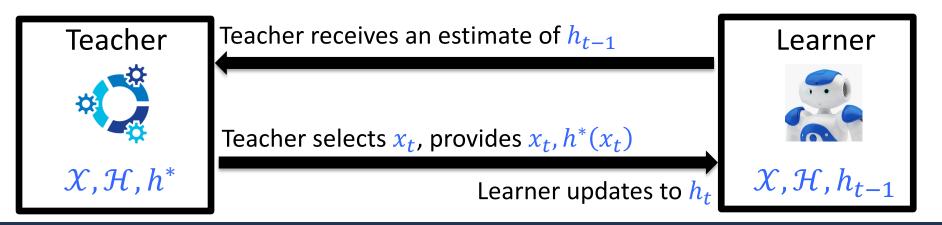
Improved Notions of TD: TD_σ

Teaching models for classic TD or RTD

Order of examples and learner's feedback does not matter

Teaching a "state-dependent" learner: TD_{σ}

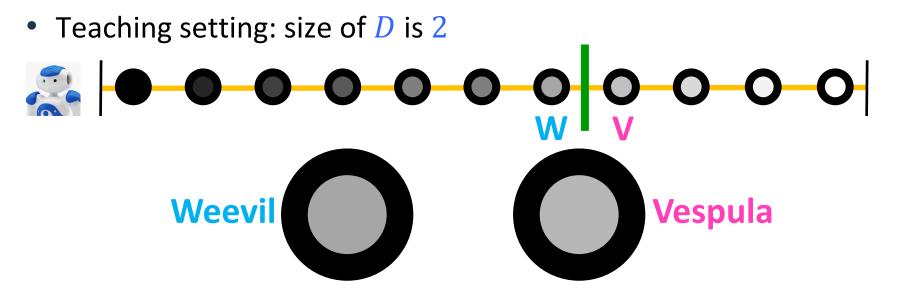
- Introduced in our recent work [NeurIPS'18, arXiv'19]
- Generalizes existing notions of teaching dimensions
- Provides necessary conditions when feedback matters



Teaching Binary Functions

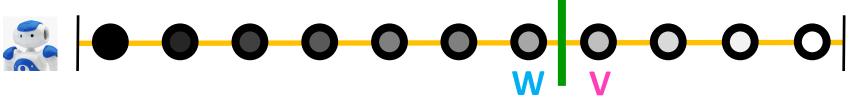
- Understanding TD vs. VCD relation
 - see work by Sandra Zilles: <u>http://www2.cs.uregina.ca/~zilles/</u>
- Teaching complexity for ML models (e.g., SVM)
 - see work by Jerry Zhu: <u>http://pages.cs.wisc.edu/~jerryzhu/</u>

Teaching Binary Functions to People



Teaching Binary Functions to People

Teaching setting: size of *D* is 2



- Limited inference power and noise
- Mismatch in representation for \mathcal{X} , \mathcal{H}
- Limited memory
- Engagement
- Interpretability (e.g., teaching via labels vs. features)
- Safety (e.g., when teaching physical tasks)
- Fairness (e.g., when teaching a class)

More suitable for poisoning attacks, less for educational settings

Machine Teaching: Problem Space

