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Machine Learning vs. Teaching
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Training data ! Learnt hypothesis "ℎ
Learner
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Why Machine Teaching?
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Adversarial settings
aka training-set poisoning

Educational settings



Applications: Online Education via MOOCs
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• Astronomical growth with over 100 million students
• Over 10,000 courses offered online

Key challenge: Dropout rate of over 95%



Applications: Skill Assessment and Practice
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• Over 10 million problems solved per year on ASSISTments
• Over 0.8 billion hours of code by 100 million students 

Key limitation: No automated or personalized curriculum of problems



Applications: Training Simulators
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Applications: Language Learning
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• Over 300+ million students
• Based on spaced repetition of flash cards

Can we compute optimal personalized schedule of repetition?



Applications: Biodiversity Monitoring
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Birds species functionally extinct:   6%
è by end of this century: 25%

Red-cockaded
(endangered)

Downy and Red-bellied
(least concerned)

Key challenge: Noise in the annotations

OrthoSound

Image credits: iNaturalist



Applications: Biodiversity Monitoring

9

Can we teach participants to label more accurately?

• Teaching helps increase awareness and engagement
• Labeled data is crucial for training machine learning systems

OrthoSound



Machine Teaching: Applications
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Educational 
settings

Language 
learning

Biodiversity 
monitoring

Online education
via MOOCs

Skill assessment 
and practice

Training 
simulators



Machine Teaching: Key Components
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Teacher’s 
algorithm

Application

Learner’s 
model



• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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Course Outline
Part 1: Different viewpoints of the problem space
• Information-theoretic models of teaching
• Cognitive models of teaching

Part 2: Designing algorithms for teaching people
• Classification rules for biodiversity monitoring
• Vocabulary for language learning
• Policies for performing sequential tasks
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• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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An Example: 1-D Threshold Function
• Task: Classify animal image as  Weevil or  Vespula

• !: Set of images, each " ∈ ! is associated with a contrast level

• ℋ: Set of hypotheses, each ℎ ∈ ℋ is a binary threshold classifier

• ℎ∗: True classifier
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An Example: 1-D Threshold Function
• Learning setting (Passive)

• Learning setting (Active)

• Teaching setting
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: avg. size of ! is Θ($)

: size of ! is Θ(log $)

: size of ! is 2



Teaching Binary Functions
• Set of unlabeled examples !
• Hypotheses class ℋ as a set of binary functions ℎ ∶ ! → 0,1
• Target hypothesis ℎ∗ ∈ ℋ
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Teaching Interaction
Start
• Learner starts at ℎ" ∈ ℋ

At time %

Stop
• When ℎ& = ℎ∗
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Teacher selects )&, provides )&, ℎ∗ )&
Learner updates to ℎ&

Teacher receives an estimate of ℎ&+,Teacher

-,ℋ, ℎ∗

Learner

-,ℋ, ℎ&+,



Learner Model: Version space learning
Notion of version space
• Maintain a set of eligible hypotheses

• Start with !" = ℋ
• At time %, remove hypothesis inconsistent with &', ℎ∗ &'

• !' = !'+, ∖ ℎ ∈ ℋ | ℎ &' ≠ ℎ∗ &'

Version space learner
• Learner starts at ℎ" ∈ ℋ, !" = ℋ
• At time %:

• Learner receives &', ℎ∗ &' and updates !'
• Learner selects a new hypothesis ℎ' ∈ !' at random
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Teacher: Optimization Problem
Analysis setting
• Worst-case vs. average case
• Finite vs. infinite/continuous ℋ
• Exact vs. approximate teaching 

Optimization problem
• Find smallest sequence #⃡ = (&', &), … ) to achieve desired objective
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#⃡,-. = argmin
5⃡

|#⃡| s.t. ℎ8 = ℎ∗

:8 = {ℎ∗}
equivalent to 



Teacher: Optimization Problem
Teaching problem is equivalent to Set Cover problem
• ℋ ∖ ℎ∗ is the set of elements to remove or “cover”
• Each % covers a subset ℋ % = ℎ ∈ ℋ ℎ % ≠ ℎ∗ % }
• Find smallest set S = {%,, %., … } to cover ℋ\ℎ∗

Complexity of optimization
Theorem: Finding optimal teaching sequence 2⃡345 is NP-hard.
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Teacher: Optimization Problem
Teaching problem is a Submodular Coverage problem
• Define set function !: 2$ → ℝ' as

• Rewrite teaching problem as

Submodular Coverage problem 
• ! . satisfies submodularity: A notion of diminishing returns

! {*} ∪ - − ! - ≥ ! * ∪ {0} ∪ - − ! {0} ∪ -
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! - = ⋃3 ∈ 5ℋ(8) where - ⊆ $

-;<= = argmin
5

|-| s.t. ! - ≥ |ℋ| − 1

We can optimize using a greedy algorithm with provable guarantees



Teacher: Algorithm
Iterative greedy algorithm
• Input: ℋ,#, ℎ∗
• Initialize: set & ← ∅
• While ) & < |ℋ| − 1:

• Select . ← argmax45∈# ) .′ ∪ & − ) &
• Provide .,	ℎ∗ . to learner
• Update & ← & ∪ {.}

Approximation guarantees
Theorem: Let &<= be the set provided by the algorithm and &⃡?@A denote 
the optimal teaching sequence. Then, |&<=| ≤ |&⃡?@A| C log |ℋ| .
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Complexity Measures: TD
Notion of teaching complexity: Teaching dimension TD
• Introduced by [Goldman, Kearns ’95] 
• Analysis setting

• randomized version space learner
• worst-case analysis
• finite size hypothesis class
• exact teaching 

Formal definition of TD
• Length of optimal teaching sequence for ℎ∗ is #$(ℎ∗;ℋ,) |
• Teaching dimension is defined as

#+ ℋ,) := max1∗∈ℋ |#$ ℎ
∗;ℋ,) |
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Complexity Measures: TD
Examples for computing TD 
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Complexity Measures: TD vs. VCD
Notion of learning complexity: VCD
• Introduced by [Vapnik, Chervonenkis ’71] 
• Sample complexity bounds for learning grow as Θ "#$ ℋ,'

A fundamental question: TD vs. VCD?
• ($ ℋ,' is ) "#$ ℋ,' ?
• There exists problems with 

• ($ ℋ,' ≪ ) "#$ ℋ,'
• ($ ℋ,' ≫ ) "#$ ℋ,'
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Improved Notions of TD: RTD
Teaching an “adversarial” learner: Classic TD
• Simple classes can be difficult to teach

Teaching a “cooperative” learner: Recursive TD (RTD)
• Introduced by [Zilles et al. @ COLT’08] 

• !"# ℋ,& is ' ()# ℋ,& ? [Simon, Zilles @ COLT’15] 

• An active area of research
• ' * 2, log log |ℋ| [Moran et al. @ FOCS’15] 

• ' * 2, [Chen et al. @ NIPS’ 16]

• ' *1 [Hu et al. @ COLT’ 17]
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where * denotes ()# ℋ,&



Improved Notions of TD: TD!
Teaching models for classic TD or RTD
• Order of examples and learner’s feedback does not matter

Teaching a “state-dependent” learner: TD"
• Introduced in our recent work [NeurIPS’18, arXiv’19] 
• Generalizes existing notions of teaching dimensions
• Provides necessary conditions when feedback matters
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Teaching Binary Functions
• Understanding TD vs. VCD relation

• see work by Sandra Zilles: http://www2.cs.uregina.ca/~zilles/

• Teaching complexity for ML models (e.g., SVM)
• see work by Jerry Zhu: http://pages.cs.wisc.edu/~jerryzhu/
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http://www2.cs.uregina.ca/~zilles/
http://pages.cs.wisc.edu/~jerryzhu/


Teaching Binary Functions to People
• Teaching setting: size of ! is 2
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Weevil Vespula



Teaching Binary Functions to People
• Teaching setting: size of ! is 2

• Limited inference power and noise
• Mismatch in representation for #, ℋ
• Limited memory
• Engagement
• Interpretability (e.g., teaching via labels vs. features)
• Safety (e.g., when teaching physical tasks) 
• Fairness (e.g., when teaching a class)
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More suitable for poisoning attacks, less for educational settings



• Type and complexity of task

• Type and model of learning agent

• Teacher’s knowledge and observability

Machine Teaching: Problem Space
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