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Machine Teaching: Key Components
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Machine Teaching: Problem Space




Cognitive Model of Skill Acquisition

Cognitive tutors

* Used by millions of students for K-12 education

e h : : ' ing.
ttps://www ca.rneglelearnmg com/ CARNEGIZ A
* https://new.assistments.org/ ”

ASSISTments

Bayesian Knowledge Tracing (BKT)
* |Introduced by [Corbett, Anderson ’95]

* Knowledge Components (KC)
* A learning task is associated with a set of skills
* Practicing a skill leads to mastery of that skill


https://www.carnegielearning.com/
https://new.assistments.org/

Task: Geometry and Algebra

Knowledge components (KCs) and exercises

Triangles ABC and DEF are congruent.
The perimeter of triangle ABC is 23 inches.
What is the length of side DF in triangle DEF?

A B " k = c: Congruent triangles

| : 8 inches o . .

ASSISTments /\ /\ k = v: One variable equations
A C D F

Exercises

OB RO




Teaching Interaction under BKT

* Each KC k is associated with a knowledge state h”

« h* = 1 represents that the skill has been mastered
« h* = 0 otherwise

Interaction attimet¢ = 1,2, ...T
* Denote the value of h* at the end of time ¢ as i
* Initialize h{ for all KCs

° Attimet:
* Teacher provides exercise x; associated with KC k
* Learner responds v, € {0, 1} with knowledge hf_,

* Learner updates knowledge from hf_, to hf



BKT Learner Model

Learner’s initial knowledge (one parameter per KC)
* Probability of mastery before teaching P\, == P(hf = 1)

Learner’s response (two parameters per KC)

* Conditional probability of guessing Pg’fless 1= P(yt =1|h¥ | = O)
* Conditional probability of slipping Pshp = P(yt =0|hF = )

Learner’s update (one parameter per KC)
e Conditional probability of learning P, := P(h't‘ =1|hf = O)



BKT Learner Model: HMM Representation

Hidden Markov Model (HMM) for a single KC k&

start state

h"* knowledge states
(unobserved)

Responses: Wrong or Correct
(observed)



BKT Learner Model: DBN Representation

Dynamic Bayesian Network (DBN) for a single KC &

—{H}, Hi >
P(HY = 1) P(Y, = 1| HE,) P(HF = 1| HE,)
Pilrclit Hf—1 =0 Pglfjess ch—l - Plléarn
HE, =1 1- Pgﬁip HE, = 1




BKT Learner Model: DBN Representation

Dynamic Bayesian Network for two independent KCs {c, v}

Exercise X is chosen by teacher
and takes value {c, v}

P(Hf = 1| Hf_, X¢)

Hi 1 =0X,=c Picarn
H_,=0H/_{=0 Priess Priess H_,=1X,=c 1
Hi 1 =1H 1 =0 | 1=Pg, Ftess Hi1=0X, =v 0
Hi 1 =0H_;=1 chuess - svlip Hi 1 =1X,=v 1
Hi 1 =1H{ ;=1 1- sClip - :lip




BKT Teacher

Prediction and inference for a single KC k

* Learner’s responses at the end of time t: D; == {y{, V>, ..., V¢ }
* Predicting learner’s response: P(Ytk =1| Dt—l)

* Inferring learner’s knowledge: P(Hé‘ =1| Dt) denoted as 6

Incremental computations
e Initial 8% = PX. . is known
* Compute P(Yt" =1| Dt—l) from 6% ,

e Compute 0 from 6 ; and y,



BKT Teacher

Predicting learner’s response

P(Y/f=1|Di1) = (1 — P&ip) - 051 + Pess - (1 — 6£1)

Derivation:

P(Yf=1|D;,1) = P(Yf=1HE, =1|D;q) +P(YFf=1,HE, =0|D;_y)

= P(Yf=1
+P(Yf =1
= P(Yf=1
+ P(Yf =1

ch—1 =1, Dt—l) . P(Hf—1 =1| Dt—l)
Hf—1 =0, Dt—l) . P(ch—1 =0 | Dt—l)

Hf—1 - 1) 'P(Hz{{—1 =1 Dt—l)
HZL(—1 - 0) ' P(Ht{(—l =0 Dt—l)

=(1- Psliip) : 85—1 + Pglfless (1 - Ht{{—l)



BKT Teacher

Inferring learner’s knowledge
P(ch =1] Dt) — éti(—l + Plléarn ’ (1 - é\é{—l)

where §£‘_1 is an intermediate quantify computed from 8{‘_1 and y;

Computing éf_l by applying Bayes rule

k k
(1_Pslip)'9t—1

* Fory, =1,0f = (

k
1_Pslip

k k k
)'Qt—l'l' Pguess'(l_gt—l
k k
Pslip'gt—l

k k
OF  + (1—Pguess)-(1—<9,:_1

_ Nk .
+ Fory, =0,6f, =p
slip



BKT Teacher

An example of prediction and inference

* Parameters: P[{; = 0.5, Pl¢,, = 0.2, Pfiess = 0.1, Pl = 0.1

0.50 0.92 0.65
0.50 0.28 0.23

k k k
1

0.84 O 0.62

Student 1

Student 2 0 032 O 0.28



Teaching Process using BKT

CARNEGIE

Parameter fitting using
historic data of students

Application

Teacher’s
algorithm

Learner’s
model

* Datasets publicly available
* Parameter fitting by standard techniques



BKT: Two Main Research Themes

Improving learner model
* Forgetting
* |Individualization per student

* Skill discovery
* exercises to skills mapping
* Inter-skill similarity and prerequisite structure

Designing teaching policies
* When to stop teaching a skill?
* Optimizing the curriculum via planning in DBN



Improved Learner Models for BKT

DBN for a single KC /k with forgetting

—{H}, Hi >
P(HE = 1) P(Y, = 1|HE,) P(HE = 1| Hf )
Pilrclit Hf—1 =0 Pglfjess ch—l - Plléarn
Hf—l =1 1-— Psliip ch—l - 1- Pflf)rget




Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM’16]

 BKT: Standard model

* BKT;: One model for all skills
* BKT,: Multiple models, one per skill

BKT-F: With forgetting
BKT-I: Individualization per student
BKT-S: Skill discovery as part of BKT

BKT-FIS: Above three extensions combined




Improved Learner Models for BKT

Comparing different models [Khajah, Lindsey, Mozer @ EDM’16]

* Dataset from A

* # students: 15,900
* # skills: 124 (with multiple exercises per skill)
* # student-exercise attempts: 0.5 million

* Cross-validation by splitting data based on student ids
* Performance metric: AUC (ranging from 0.5 to 1)

BKT, BKT, BKT-F BKT-I BKT-S BKT-FIS | Deep BKT

0.67 0.73 0.83 0.785 0.76 0.825 0.86

Deep Knowledge Tracing
[Piech et al. @ NIPS'15]



Desighing Teaching Policies

Much less research on designing teaching policies

* The most popular way of using BKT for teaching is
- STOP teaching skill k when P(Hf = 1|D;) = 0.95
* Planning techniques
* Faster teaching via POMDP Planning [Rafferty et al. @ CogSci’16]

* “When to stop” instructional policies with guarantees
* When to stop? Towards Universal Instructional Policies [Kaser, Klingler, Gross @ LAK’16]
* From Predictive Models to Instructional Policies [Rollinson, Brunskill @ LAK’15]

Better predictive models >< Better instructional policies



Cognitive Models of Skill Acquisition

Summary of BKT

* Well-studied cognitive model, used in real-world applications
* Generic model for complex learning tasks (e.g., learning Algebra)

Limitations of using cognitive models

* Difficult to design optimal teaching policies

* Generic models but might not capture fine-grained task details




Machine Teaching: Problem Space




Machine Teaching: Problem Space

[ICML ’14]
[AAAI ’19]




Setup: Weevil and Vespula (WV)

Weevil

f,: head-body
color contrast Vespu la

A(’
Yo e

/ A A A f,: head-body

Feature space and set X
* fi: head-body size ratio

* f,: head-body color contrast

‘ size ratio
 — Y —"

Hypotheses class

* Green: target hypothesis h"
* Blue: ignoring feature f;

. : ignoring feature f,

* Red: wrongly using feature f,




Learner: Classical Model

* C(Classical model [Goldman, Kearns '95]
* Hypotheses eliminated upon inconsistency

* Optimal teaching sequence := Set Cover
* Picks “difficult” (confusing?) examples



Learner: Our Robust Model

Classical “noise-free” model: Our “robust” model:
Hypotheses eliminated Hypotheses less likely
upon inconsistency upon inconsistency



Learner: Our Robust Model

Hypotheses class /'
* Set of functionsh : X - R

* Label assigned by h is sgn(h(x))

Learner’s update

-----

7=12,..,t

AOETIONE N IS

yr#sgn(h(xy)) likelihood function

Inconsistent examples

* Learner selects a new hypothesis as h;~P;(h)



Learner: Our Robust Model

Example of a likelihood function
* Given a labeled example (x, v), define

[(y; h,x) = !

1+exp(—a-y-h(x))

where « is a scaling factor

* o — oo reduces to elimination of inconsistent hypotheses




Teacher: Optimization Problem

Expected error

* LetS bea sequence of examples shown; the expected error rate is

Elerr|5]= ) P(h|5)-err (hh")

heH
Distribution over learner’s h Fraction of examples
after showing examples S where h and h* disagree

Optimization problem
* Find smallest sequence of examples to achieve a desired error rate

SOPt = argmin |S| s.t. E[err] S| <e
3



Teacher: Optimization Problem

* Step 0: Expected error rate is a set function: E|err | ?] = E[err | 5]

* Step 1: Maximize reduction in error
R(S) = E[err | @] — Elerr|S] = z (P(h |®) — P(h | S)) - err (h, h™)
heH

Designing submodular surrogate objective
* Step 2: Replace R(.) with a surrogate objective F (. ):
FS) = ) (Qh10) - Q1) - err (h, k)

hEH
where Q(h | S) is the unnormalized posterior

* Theorem: F(.) satisfies submodularity. It is sufficient to optimize F
to get guarantees on the original teaching problem.



Teacher: Algorithm

Iterative greedy algorithm
* Input: H, X, h”
Prior Py(H), learner model parameter «
Desired error €
* |nitialize: set S « @
* While F(S) < Elerr |@] — € - Py(h"):
e Select x « argmax,/. F(x'US) — F(S)
* Provide x, sgn(h*(x)) to learner
* Update S « S U {x}



Teacher: Theoretical Guarantees

Approximation guarantees for the general case
Theorem: Fix €. Let z = Py(h") be the prior probability of the target
hypothesis. The algorithm terminates after at most O (|§°pt| : log(é))

examples such that learner’s error is less than €.

Teaching complexity for linear separators

Theorem: Suppose that the hypotheses are hyperplanes and X can be
synthesized. Then, the teaching algorithm achieves learner’s error less

than € after at most O (logz(i)) examples.



Results (WV): Simulated Learners

e | X|=100,|H| =96
* 100 simulated learners: varying o

* Teacher considers a learner’s model with oo = 2

* Test phase with 10 unseen examples

0.6
0.55 -
RANDOM
0.5 ,CLASSICAL

Test Error
o
D
(Oa]

o
I

ROBUST

0 3 6 9 12 15
# Teaching Examples




Results (WV): Teaching Curriculum

Classical Model /6\

Hypotheses eliminated
upon inconsistency

Robust Model
Hypotheses less likely

upon inconsistency

1«
\

N CLASSICAL
\

0.95 |- \';Z*-‘z -
* < =rTSE

RANDOM

0.9
m

0-85 T T T T T T T T T T T T T 1
1 3 5 7 9 11 13 15
Teaching Example

Difficulty Level




Results (WV): Human Learners

* 780 participants from a crowdsourcing platform
* 60 per control group: (algorithm, length)

* Test phase with 10 unseen images

0.5

0.45

\- -l a» T
2 oo,
3 -~ > CLASSICAL

0.4

Test Error

# Teaching Examples




Setup: Endangered Woodpeckers (WP)

|

Least concerned Endangered

Downy WP Red-bellied WP Red-cockaded WP

|




Setup: Endangered Woodpeckers (WP)

* What is suitable X and HH? I "‘
* Crowd-embedding [Wellinder et al. NIPS’10]

« Setof |X| = 100 images from [CUB-200 dataset]
* Low dimensional embedding using human annotation data




Results (WP): Human Learners

* 520 participants from a crowdsourcing platform
* 40 per control group: (algorithm, length)

* Test phase with 15 unseen images

0.5

0.4

Test Error

# Teaching Examples




Towards Large-scale Multiclass

* Richer interpretable teaching signals
* Adaptive models of teaching

* Limited memory



Machine Teaching: Problem Space

[ICML ’14]
[AAAI ’19]




