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Machine Teaching: Key Components
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Machine Teaching: Problem Space
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Applications: Language Learning

memirisce

* Qver 300+ million students

* Based on spaced repetition of flash cards

Can we compute optimal personalized schedule of repetition?




Setup: Learning via Flashcards

* n: number of concepts (flashcards)
* T: total time learning steps

dessert dress helicopter toy umbrella vacuum cleaner



Teaching Interaction using Flashcards

Interaction attimet¢ = 1,2, ...T

1. Teacher displays a flashcard x; € {1,2,..,n} “ Pl
2. Learner’'srecallis y; € {0,1} w15

3 Answer: Spielzeug

3. Teacher provides the correct answer

X jouet

2 jouet

Learning Phase (1) Learning Phase (2) Learning Phase (3) Learning Phase (4) Learning Phase (5) Learning Phase (6)

Research question: What is an optimal schedule of displaying cards?



Background on Teaching Policies

Example setup

 n =5 concepts givenby {a,b,c,d, e}
e T =20

Random teaching policy

a—->b-a-e—-»>c-o>d~a-d-oc-o>a—->b-oe—->a->b—->d-e—

Round-robin teaching policy

a—->b->c->d-»e—-»>a->b->c->d-e>a-b-o>c>d—-e—-a~-

Key limitation: Schedule agnostic to learning process



Background on Teaching Policies

The Pimsleur method (1967)

* Used in mainstream language learning platforms

* Based on spaced repetition ideas
* Spacing effect: practice should spread out over time
* Lag effect: spacing between practices should gradually increase

Toe—

a—->b->a-b->c>a->c->b->d-c—>d-a->b->d->c—-e—-

Key limitation: Non-adaptive schedule ignores learner’s responses



Background on Teaching Policies

o correctly-remembered cards
The Leitner system (1972) NN
* Used by Duolingo in its first launch G021 (a]) (81 (1]
Adapt|Ve SpaCIng |nterva|5 incorrectly-remembered cards
Schedule 1
9-0O-@-0O---r0-D-0-D--BO-D--E)r
Schedule 2

Key limitation: No guarantees on the optimality of the schedule



Learner: Modeling Memory & Responses

Half-life regression (HLR) model

* |Introduced by [Settles, Meeder @ ACL'16]
* History up to time ¢ given by (x1.¢, V1.¢t)

°* For a concept x:
* Last time step when concept x was taughtis [} € {1,..,t}
* Learner’s mastery for concept x at time t is hf

Recall probability in future under HLR model
* Probability to recall concept x at futuretimez € {t + 1,..,T}is

(t-1¥)
(0 Cennya)) =2 ¢ )



Learner: Modeling Memory & Responses

* Recall probability based on exponential forgetting curve

(&) g10°
gx(T' (xl:tr yl:t)) = 2 h* i;:
£ 0.5
A*: time past since concept x was taught §
0.0

h”*: current “half-life” of concept x

* Half-life h* changes when learner is taught concept x
Xy X

* Changes parameterized by (a*, b™)
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Teacher: Scheduling as Optimization

Teacher’s objective function

* Given a sequence of concepts and observations x,.7, V1.7, we define
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f(xl:Tr yl:T) — ﬁz gx(t +1, (xl:t' Y1:t))
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recall probability

Area under the curve
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Optimization problem
* Teaching policy 7: (x1.t—1, y1.—1) = {1,2,.., 1}
* Denote average utility of a policy w as F/() := E(, ) | f (XT.7, yi'ir) ]

* Optimization problem is given by

n* = argmax,; F(m)



Teacher: Algorithm

Adaptive greedy algorithm
e fort=1,2,..T:

* Select x; « argmax x Eqyy[f(x1.6-1 @ %, y1.6-1 D ¥)] — f (X161, Y1:6-1)
* Observe learner’s recall y; € {0, 1}

* Update x1.t < X1.0—1 D X5 V1.t < Y1:0-1 D Yt




Teacher: Theoretical Guarantees

Characteristics of the problem

* Adaptive sequence optimization
* Non-submodular

* Gain of a concept x can increase given longer history
* Captured by submodularity ratio y over sequences
* Post-fix non-monotone

* f(orange @ blue) < f(blue)
e Captured by curvature w over sequences
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Teacher: Theoretical Guarantees

Guarantees for general case (any memory model)
e Utility of 78" (greedy policy) compared to 7°Pt is given by

T t—1
Y-t Wz * VYt
gr opt —
F(m8) > F(m°PY) ;( . H(l . )) Theorem 1
> F(m°PY) (1 — e~ ®max¥Ymin) Corollary 2

max

* |llustration with T=15 and n=3 concepts using HLR model

1.0 1 0-6 1.0 -
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Teacher: Theoretical Guarantees

Guarantees for the HLR model

* Consider the task of teaching n concepts where each concept is
following an independent HLR model with the same parameters
(a* =z,b* =2z)Vx €{1,2,..,n}

Theorem 3: A sufficient condition for the algorithm to achieve a high
nz-exp(—z))

€

utility of at least (1 — ¢) isgivenby T = O (




Results: Simulated Learners

HLR learner model

* Equal proportion of two types of concepts
* easy concepts with parameters (a = 10,b = 5)
» difficult concepts with parameters (a = 3,b = 1.5)

Algorithms

* RD: Random, RR: Round-robin
* LR: Least-recall (generalization of Pimsleur and Leitner system)
* GR: Our algorithm

Performance metrics
* Objective function value

* Recall in near future after finishing teaching (Recall at “T" + 10”)



Results: Simulated Learners
Varying T (fix n = 20) Varying n (fix T = 60)

0.8 1\
v\,
0] ” 0.7 - ".‘ \ GR
Objective value 3 06 \
Q Ie)
S © 0.5 - f /'
RD Rrp ~
04 7 'Iv..l..\
40 60 80 10 20 30
T n

Recall in future

Recall at T+ 10
Recall at T+ .10




Results: Human Learners

Online learning platforms

* German vocabulary: https://www.teaching-german.cc/
* Species names: https://www.teaching-biodiversity.cc/

Learning Phase

@ |
g ‘.‘y y
..r " 1
s A
.
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RS

Next question in:

(-

\N\\\\\\\\\ N\ N\ N\ \(\"\"'‘\"'‘\"‘(\h{y
Prequiz Phase: 15/15

N
Learning Phase: 3/40 s
toy
Postquiz Phase: 0/15
Answer: Spielzeug
X spiel

spiel ‘

* Performance based on (post-quiz score — pre-quiz score)


https://www.teaching-german.cc/
https://www.teaching-biodiversity.cc/

Results (German): Human Learners

* 80 participants from a crowdsourcing platform (20 per algorithm)

* Dataset of 100 English-German word pairs
* GR parameters: (a = 6,b = 2) for all concepts

e T=40,n =15

Avg. gain




Results (Biodiversity): Human Learners

* 320 participants from a crowdsourcing platform (80 per algorithm)

Dataset of 50 animal images of common and rare species

e GR parameters: (a = 10,b = 5) for common, (a = 3,b = 1.5) for rare

e T=40,n =15

All species Rare species
GR LR RR RD GR LR RR RD
Avg.gain | 0.475 | 0.411 | 0.390 | 0.251 Avg.gain | 0.766 | 0.668 | 0.601 | 0.396
p-value 0.0021 | 0.0001 | 0.0001 | | p-value - 0.0001 | 0.0001 | 0.0001

(b) Rare: Angwantibo, Olinguito, Axolotl, Ptarmigan, Patrijshond, Coelacanth, Pyrrhuloxia
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Applications: Training Simulators

VIRTAMED®

WE SIMULATE REALITY

Key limitation: No automated or personalized curriculum of tasks



Applications: Skill Assessment and Practice

Triangles ABC and DEF are congruent. @
The perimeter of triangle ABC is 23 inches. 5 s

What is the length of side DF in triangle DEF?

B E
= i : 8 inches i i
A > (& D F
Comment on P

& Wros oo
| turn

roblem £4468

do ( turn (XKD

| turn
En\fove forward

X Sorry, that is incorrect. Let's move on and figure out why!

J

Which side of triangle ABC has the same length as side DF of triangle DEF?

Comment on Problem #4464

(d.E10Y to the left U v
do

Key limitation: No automated or personalized curriculum of tasks




Sequential Decision Making: Ingredients

Key ingredients
* A sequence of actions with long term consequences

* Delayed feedback
» Safely reaching the destination in time
* Successfully solving the exercise
* Winning or losing a game
°* Main components
* Environment representing the problem
* Student is the learning agent taking actions
* Teacher helping the student to learn faster



Sequential Decision Making: Environment

Markov Decision Process M := (S, A, P, Si,it) Sena, R)

* §:states of the environment

* A:actions that can be taken by agent

* P(s'|s,a): the transition of the environment when action is taken

* Sinit: defines a set of initial states

Sena: defines a set of terminal states

R(s,a): reward function




Sequential Decision Making: Policy

Agent’s policy it
* 1(s) — a: A deterministic policy
* 1(s) — P(a) : A stochastic policy

Utility of a policy

* Expected total reward when executing a policy 77 is given by

> RGss, ad]

* Agent’s goal is to learn an optimal policy

UTC — ]EP,TL'

n* = argmax, U™



An Example: Car Driving Simulator

* State s represented by a feature vector ¢ (s)

(location, speed, acceleration, car-in-front, HOV, ...)

* Action a could be discrete/continuous
{left, straight, right, brake, speed+, speed-, ...}

Transition P(s'|s, a) defines how world evolves
(stochastic as it depends on other drivers in the environment)

R(s,a) defines immediate reward, e.g.,
* 100ifs € Sgp4
e -1ifs & S,
* -10if s represents "accident”

* Policy 7" dictates how an agent should drive



An Example: Tutoring System for Algebra

State s represented by the current layout of variables
Action a could be {move, combine, distribute, stop, ...
Transition P(s'|s, a) is deterministic

R(s,a) defines immediate reward, e.g.,

. 100ifs € S,y
e -1ifs % Send

A

ASSISTments

EMMY'’S
Workshop

Try Solving an Equation

Click to start working through your first problem to earn a badge!

7 =-203%-5/3-6)-2+ 1/3x +2x - 2 o n —2(&-%—6)—2+1x+2x—2

3

7 = 203x-5/3-6)-2+ 1/3x + 2x -2 S _:(3_r_§_6)_z+§x+zt_z

Start Solving




An Example: Tutoring System for Coding

* State s could be represented by
* raw source code
* abstract syntax tree (AST)

e execution behavior

* Action a could be eligible updates (e.g., allowed by the interface)

. _.20'““ a-
move forward . _.'.25\:;50 9
turn RN
HoC Problem 4 0 move forward .
turn
move forward 17
T
1 /';.31 22
. ’ -33 . 36/16 / ‘6\4 2.9_
repeat until v e . - £ / A 3; 9>
@ ) ahcadV -.7:13‘_'5_‘ ° ‘; . ‘e
HoC Problem 18 : b, -%m»f’~‘
- N 3 6 »
12- o @5 3

Image credits: [Piech et al. @ LAK’15]



Learning Settings: Reward Signals

* Standard setting in reinforcement learning (RL)
* Pisknown, R is known

* Mode-based planning algorithms (e.g., Dynamic Programming)
* P, R are both unknown

* Model-free learning algorithms (e.g., Q-learning)

* A wrong model of P is known
* Algorithms with robustness and safety criteria

(Book) Reinforcement Learning: An Introduction [Barto and Sutton 2018]



Learning Settings: Demonstrations

* Learning via observing behavior of another agent
* Behavioral cloning

* Direct policy learning from observed demonstrations
* E.g., Dagger algorithm
* |nverse reinforcement learning (IRL)

* Recover reward function explaining observed demonstrations
* E.g., Maximum Causal Entropy algorithm (MCE-IRL)

(Survey) An Algorithmic Perspective on Imitation Learning [Osa et al. 2018]



The Role of Teacher: Research Problems

Teaching via Teaching via
demonstrations reward signals
Optimizing curriculum Optimizing curriculum
of tasks of tasks
[IJCAI "19]
Optimizing sequence Denser rewards
of demonstrations (e.g., defining sub-goals)
Accounting for [NeurlPS ’18] Providing advice
model mismatch [arXiv '19] (e.g., correcting errors)
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Machine Teaching: Problem Space

* Type and complexity of task

* Type and model of learning agent

2

* Teacher’s knowledge and observability

[N




Machine Teaching: Applications

Online education = == ' Skill assessment

via MOOCs cmureera | v and practice
i 7% canvas D 4
/ i N\
/ v 2STUDY \
/ . \
Language R Educational Biodiversity
learning memtice settings monitoring
\ /
~ /7
~ v d
~ — _
-~ - Training -
simulators



Machine Teaching Group @ MPI-SWS

* Webpage

https://machineteaching.mpi-sws.org/

* Recent publications
https://machineteaching.mpi-sws.org/publications.html

* Contact
adishs@mpi-sws.org

* Slides

https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-dayl.pdf

https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day2.pdf

https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day3.pdf



https://machineteaching.mpi-sws.org/
https://machineteaching.mpi-sws.org/publications.html
mailto:adishs@mpi-sws.org
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day1.pdf
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day2.pdf
https://machineteaching.mpi-sws.org/files/talks/cmmrs2019-machineteaching-day3.pdf

